Workshop on timing detectors at Lyon, 15-16 Oct. 2008

Tests of MCP-PMT for TOP counter

- Prototype production
- CFD readout
- Protection for ion-feedback

K. Inami (Nagoya university, Japan)

Introduction

- TOP (Time Of Propagation) counter
 - Developing to upgrade the barrel PID detector
 - For Super B factory
 - L_{peak}~10^{35~36}/cm²/s, 20~100 times higher than present
 - Need to work with high beam BG

e

- To improve K/π separation power
 - Physics analysis
 - $B \rightarrow \pi \pi / K \pi$, $\rho \gamma$, $K \nu \nu$ etc.
 - Flavor tag
 - Full reconstruction

• Target; 4σ for 4 GeV/c

TOP counter

• Position information \rightarrow <u>Position+Time</u>

Photo-device for TOP counter

- Micro-Channel-Plate (MCP) PMT
 - Square shape, 4 linear anodes
 - MCP; two stage
 - Diameter 10µm, length 400µm
 - Tiny electron multipliers
 - High gain; ~10⁶
 - \rightarrow Fast time response

Pulse raise time ~500ps, TTS < 40ps

Operational under high magnetic field (~1.5<u>T)</u>

MCP channel

HV

TOP counter Prototype

- Quartz radiator + mirror
- MCP-PMT (square shape, 4ch)

PMT box

- Support PMT modules
- Attach to quartz support

• PMT module

- MCP-PMT
- PMT base
 - HV divider
 - AMP

• MCP-PMT

- Multi-alkali photo-cathode
 - 13 PMTs without AI protection

• 10 additional PMTs with AI protection; in production

PMT performance (QE)

• Measure by monochrometer

- Enough QE
 - Some of them are bad. Need to improve.

Beam test

- 2GeV/c electron beam at KEK Fuji test beam line in June
- Prototype of forward part

- Using real size quartz and MCP-PMT
 - MCP-PMT: Multi-alkali p.c., C.E.=60% (no Al protection)
- Check items
 - Ring image
 - Num. of detected photons
 - Time resolution
- Set up
 - TOP (915x400x20mm³)
 - Timing counters (σ <10ps)
 - MCP-PMT+10mm quartz
 - MWPCs, triiggers

PMT base + CFD

• CFD on PMT base

CH4

CH1

- Digitize with low noise
 - Low PMT gain operation
- Robust against cross-talk
 - Able to determine PMT timing by (approximately) pulse peak.

CH3

CH₂

CFD prototype

- HV divider + AMP + CFD
- Small size
 - 29mm^w (\rightarrow 28mm^w in next version)
- CFD board
 - Fast AMP (MMIC, 1GHz, x20)
 - Fast comparator (180ps propagation)
 - CFD with pattern delay (500ps)
 - Avoid pulse distortion

- 5ps resolution
 - 20mV test pulse

CFD performance with MCP-PMT

• LED with time walk correction and CFD

Good TDC distribution CFD prototype has enough ability for MCP-PMT.

Protection for ion-feedback

Al protection laver

- Long lifetime against high hit rate
 - Cherenkov photons from beam BG
- Lifetime test
 - Hamamatsu round-shape MCP-PMT
 - With/without AI protection layer
 - Enough lifetime of QE for PMT with AI protection layer

Relative Q.E.(sensitivity)

0.8

0.6

0.4

0.2

0

10

Time in Super-B factory (year)

15

5

2008/10/15-16 WS on timing detectors at Lyon

Source of ion

- Measure timing of after pulse
 - Dark pulse (←single photon level)
 - By oscilloscope (2.5GHz)
 - → H⁺ from MCP surface

		HPK without Al	HPK with Al	
$\Delta T(calc.)$	H+	5.4ns	10.7ns	
	H ₂ ⁺ , He ²⁺	7.2ns	15ns	
∆T(data)		~ 6ns	~ 10ns	

Lifetime vs. rate

• Check correlation between lifetime and rate of after pulse

Protection with Al layer

- Ion feed-back
 - Protected by Al layer on 1st MCP
 - Reduce correction efficiency
 - 60% → 36%
 - H⁺ from 2nd MCP layer?
 - Many elections hit MCP surface
 - Difference; ~10³
- Put Al layer on 2nd MCP
 - Recover CE; ~2 times
 - Keep lifetime?
 - Lower effective gain?

MCP-PMT with Al on 2nd MCP

- Prototype by Hamamatsu
 - Square-shape Multi-alkali p.c.
 - Check performance with following HV ratio
 - Take MCP HV as reference
 - Additional HV between MCPs
 to pass through Al layer

. .

HV for each gap

 $\overline{}$

	a) K-MCPIN	b) MCPIN- Mid	c) Middle	a) Mid- MCPOUT	e) MCPOUT- Anode	Max HV (by HPK)
Without Al	200	1000	0	1000	600	2800V
With Al on 1st MCP	1000	1000	0	1000	600	3600V
With Al on 2nd MCP	200	1000	1000	1000	600	3800V

ADC, TDC distributions

- For single photon
 - Gain=(1.4~1.9)x10⁶

• Result

- Enough gain
 - Good single photon peak
- Enough TTS

• ~34ps

Gain and TTS

- Similar gain dependence on HV
 - HV between MCPs makes some gain
- Similar correlation between TTS and gain
- Enough performance → check after-pulse and lifetime

Summary

- TOP counter prototype
 - MCP-PMT (semi-)mass production, 13 pieces
 - Stable for TTS performance, Need to improve QE
 - Beam test
 - Ring image, number of photons, time resolution as expected
 - Next; check with Focusing system
 - CFD board
 - Good performance with MCP-PMT
- Protection for ion-feedback
 - Measure timing and rate of after-pulse
 - Confirmed that ion is H⁺ from MCP surface
 - Correlation between lifetime and rate of ion-feedback
 - Prototype with Al layer on 2nd MCP
 - To improve correction efficiency
 - Enough TTS and gain
 - Next; measure lifetime and after-pulse