Fast Timing and TOF in HEP

Henry Frisch
Enrico Fermi Institute, University of Chicago Enrico Fermi Institute, University of Chicago **Long-standing motivation- understanding the basic forces and particles of nature hopefully reflecting underlying symmetries**

B_s Mixing

Many many many- and many more not done yet

CDF-1979

compared to Atlas and CMS (tho 5000 tons)

10/17/2008

Fast Timing and TOF in HEP

Henry Frisch Enrico Fermi Institute, University of Chicago

- – 1. Moving from the hadron level to the quark level- we measure 3-momenta of hadrons, but can't follow the flavor-flow of quarks.
- – 2. Quarks are distinguished by different massesup and down are light (MeV), strange a few 100 MeV, charm 1.7 GeV, bottom 4.5 GeV, top 170.
- –- To follow the quarks - 2 direct ways - lifetime (charm,bottom), measuring the mass (strange).
- To measure the mass, measure $\vec{\mathsf{p}}$ and $\vec{\mathsf{v}}$: (v=L/ $\delta \mathsf{t}$) – To measure the mass, measure p and v

The unexplained structure of basic . g. quark

building blocks-e.g. quarks
The up and down quarks are light (few MeV), but one can trace the others
by measuring the mass of the particles containing them. Different models
of the forces and symmetries predict different

3

Fast Timing and TOF in HEP

Henry Frisch Enrico Fermi Institute, University of Chicago

- I believe that the existence of 'flavor'- up, down, strange, charm, bottom, and top is essential, in the sense that if we can't understand it in a deeper way, we're in the grip of initial conditions rather than fundamental symmetries or principles.
- Disclaimer -- View not shared by some (esp. string) theorists-

2 TeV (> 3ergs) pbar-p collisions

For each track, $\beta = L/\Delta t$, where $L \equiv$ track length (helix) from vertex to outer radius, and:

 Δt = (time at outer radius $-t_0$), where t_0 is the time of interaction.

R-Z (side) view of the same event. Note the misreconstructed tracks in this view (no slouch detector-96 layers of COT, 7 or 8 silicon).

10/17/2008

Lyon Workshop on Picosecond Timing

• E.g- Tevatron 3rd-generation detector (combine D0 and CDF hardcore groups); ATLAS Upgrade (true upgrade)

10/17/2008

Lyon Workshop on Picosecond Timing

Application 1- Collider Detector Upgrades

 Precision Measurements that rely on measuring quar k -flow

W-mass: W mass: W->c+sbar or +dbar >c+sbar or u+dbar different kaon prod ction uction To p-mass: t+tbar -> W+W-b+bbar; need to tell b from bbar E.g.- ATLAS, Tevatron-III

Application 1- Collider Detector Upgrades

Take a systematics-dominated measurement: e.g. the W mass.

Dec 1994 (12 yrs a g o) -

`Here Be Dragons' Slide: remarkable how precise one can do at the Tevatron (MW, Mtop, Bs mixing, …)- but has taken a long timelike any other precision measurements re quires a learnin g q process of
techniques, details, detector upgrades….

TheoPis730P8o(SM)

Precision Measurement of the Top Mass

11 **Run I in the Technical Design Report (TDR). Systematics are measurable with Setting JES with MW puts us significantly ahead of the pro jection based on more data (at some level- but W and Z are bright standard candles.)**

Real Possibility

- No SM Higgs is seen at the LHC
- The M-top/M-W plane says the Higgs is light.
- Serious contradiction inside the SM-`smoking gun' for something really new…
- It will be critical to measure M_W and Mtop with different systematics...

Application 1a- Collider Detector Upgrade
Photon Vertexing

• Atlas Upgrade- Higgs to gamma-gamma? -- Higgs to gamma-gamma?

10/17/2008

Lyon Workshop on Picosecond Timing 13

Application 2- Forward LHC Detectors

- - Idea is to do missing-mass search for new heavy states (e.g. Higgs) by looking at the quasi-elastic protons forward and backward;
- Need few psec timing resolution to beat down backgrounds (accidentals);
- Different problems -- close to LHC beam (i.e rad hard), in tunnel, long distances for clock distribution (but use beam), but few channels -(small MCP's?);
- Good early application- see talks by Christophe, Krzystof, Andrew,..

Application 3-Super-B Factories

- Particle ID for precision b-physics measurements in larger angle regions
- Probe energy frontier via precision/small ^σ
- See talks by Gary and Jerry

Application 4: Fixed-target Geometries Particle ID and Photon Vertexing

 \bullet - Consider LHCb and JPARC K_L $^{\rm O}$ – $>$ π $0_{\rm VV}$

Geometry is planar- i.e. the event is projected onto a detection plane. Timing gives the path length from the point on the plane^{*}-

Critical new information for vertexing, reconstruction of π^0 's from 2 photons, direction of long-lived particles.

Very thin in 'z'-direction, unlike Cherenkov counters.

Gives a space-point with all 3 coordinates- x,y and z, correlated for reconstruction r reconstruction- i.e. 'tomographic'.

Application 5- Neutrino Physics

• Example- DUSEL detector with 100%
coverage and 3D photon vertex reconstruction.

10/17/2008

Lyon Workshop on Picosecond Timing 17

Lyon Workshop on Picosecond Timing

Characteristics we need

- Feature size <~ 300 microns
- Homogeneity (ability to make uniform large large area- think amorphous semicndtr solar-panel)
- Fast rise-time and/or constant signal shape
- Lifetime (rad hard in some cases, but not all)
- System cost << silicon micro-vertex system

Detector Development- 3 Prongs

- 1. Electronics- have settled on wave-form sampling
	- **Already demonstrated by Breton Delanges Ritt and Varner Breton, Delanges,Ritt, and - many `pieces' exist, main change is going to faster process and pooling expertise.**
	- Reasonable precision (see talk by Genat)- few psec with present **rise times, ~1 with faster MCP design.**

Gives much more than time- s p , p p, (g) ace, pileup, etc. (Tang)

- 2. MCP development- techniques and facilities (probably) exist- ALD, anodic alumina--will require industry, natl labs,
- 3. Simulation –

Electronics simulation in good shape

Rudimentary `end-to-end' MCP device simulation exists-

Validation with laser teststand and beam line started

Too smallcan go larger-

(But how does *i* hultiplicatio n work- field lines?)

From Argonne MSD ALD web page- can we make cheap (relatively) ultra-fast planar photo-detector modules?

10/17/2008

Lyon Workshop on Picosecond Timing ²¹

Design Goals

Colliders: ~ 1 psec resolution, < 100K\$/m2 Neutrino H2O: $~100$ psec resolution, $~1K\$ /m² PET: ~ 30 psec resolution, < 20% of crystal cost (but crystal cost not independent of readout!)

Micro-photograph of Burle 25 micron t bu e- G S llb Greg Sellberg (Fermilab)- \sim 2M\$/ m^2 **not including readout**

10/17/2000

Lyon Workshop on Picosecond Timing ²³

**Camden Ertley results using ANL laser-test stand and
commercial Burle 25-micron tube** (note- pore size may matter less than current path!- we can
do better with ALD custom designs (transmission lines)) Understanding the contributing factors
to 6 psec resolutions with present
Burle/Photonis/Ortec setups-Jerry Vavra's Numbers

- 1. TTS: 3.8 psec (from a TTS of 27 psec)
- 2. Cos(theta)_cherenk 3.3 psec
- 3. Pad size 0.75 psec
- 4. Electronics 3.4 psec

`Photo-multiplier in a Pore'

- Idea is to build a PMT structure inside each pore have ^a defined dynode chain of rings of material with high secondary emissivity so that the start of the shower has a controlled ______________ geometry (and hence small TTS)
- One problem is readout -- how do you cover a large area and preserve the good timing?
- Proposed solution- build anode into pores, capacitively couple into transmission lines to preserve pulse shape.

Psec Large-area Micro-Channel Plate Panel (MCPP)- LDRD proposal to ANL (with Mike)
Pellin/MSD)

Get position AND time Anode Design and Simulation(Fukun Tang)

Expected Performance Anode Design and Simulation(Fukun Tang)

T32 Responses with Anode-Stubs

• Transmission Line- simulation shows 3.5GHz
bandwidth- 100 psec rise (well-matched to MCP) • Board has been made-

10/17/2008

Scaling Performance to Large Area Anode Simulation (Fukun Tang)

 \bullet

10/17/2008

Front-end Electronics **Critical path item- probably the reason**

- **psec detectors haven't been developed

B** had started with very fast BiCMOS designs- IBM
IP-Tang designed two (really pretty) chips • We had started with very fast BiCMOS designs- IBM 8HP-Tang designed two (really pretty) chi -Tang designed two (really pretty) chips
- Realized that they are too power-hungry and too 'boutique' for large-scale applications

- Have been taught by Gary Varner, Stefan Ritt, Eric DeLanges, and Dominique Breton that there's a more clever and elegant way- straight CMOS – sampling onto an array of capacitors
- Have formed a collaboration to do this- have all the expert groups involved (formal with Hawaii and 10/17/2008Lyon Workshop on Picosecond Timing 2012 1994 France)- see talks by Tang and Jean-Francois

Front-end Electronics

Jerry's #'s re-visited : Solutions to get to <several psec resolution. **1. TTS: 3.8 psec (from a TTS of 27 psec)**

MCP development- reduce TTS- smaller pores, smaller gaps, filter chromaticity, ANL atomic-deposition dynodes and anodes anodes.

2. Cos(theta)_cherenk 3.3 psec Same shape spatial distribution (e g strips and (e.g. time-differences measure spot)

3 P d i 0 75 3. a d size .75 psec-Transmission-line readout and shape reconstruction

4. Electronics 3.4 psec – t sampling- should be able to get < 2 psec 34**(extrapolation of simulation to faster pulses)**

Modus O perandi so fa r

- \bullet In Nov. 2005, we had our 1st workshop- idea was to invite folks working or interested in related subjects- didn't know many (most) of them
- \bullet Have developed tools and knowledge - also contact with pioneers and practictioners (Ohshima, Howorth, Va'vra,...; Breton, Delanges, Ritt, Varner)
- \bullet Development clearly too big for one groupdevices, electronics, applications- have worked collaboratively with each other, national labs (see talks by Karen, Andrew,Jerry,…), and industry (Burle/Photonis, Photek, IBM,…)

My attempt at Goals for the Workshop

(these are my goals - apologies if it's presumptious)

- To form collaborations on solving key problems
- To identify expertise- many of these questions aren't new, and somebody (probably Jon or Emil or Jerry) knows..
- To identify and advertise facilities- e.g. the Fermilab test beam, ANL laser test-stand, CERN IBM 0.13micron kit,..
- \bullet To answer critical questions along the path…(e.g. 2ndary emission of materials,..)

My Questions This Time-I

Note -- many questions from previous workshops have been answered!

- 1. What is the electric field geometry in the MCP pore? (what are bulk and surface resistivities?).
- 2. What is the res ponse of a nano-carbon film to 200 eV electrons? (photons?)
- 3. After the first strike, can the pore be straight?
- 4. If one uses diamond (e.g.), do you really need fewer strikes?

My Questions This Time-II

Note -- many questions from previous workshops have been answered!

- 1. Other ways to make pores- e.g. Pierre Jarron's develo pments?
- 2. Who makes big photocathodes? (Pioneer?)
- 3. Who is interested in learning how to make big photocathodes for fast timing?
- 4. Is there a simulation of the internal workings of photo-cathodes out there somewhere?

My Questions This Time-III

- 1. Can we get a serious simulation effort of the MCP functions started (collab with Lyon?)?
- 2. Funding from NSF Computing, SBIR, a a a a ^a European agency?
- 3. Are there MCP simulations already out there?
- 4. Can we find a Materials Science group with students, postdocs, etc. to work with us?

Thank you

10/17/2008

Electronics Simulation-development of -channel CMOS readout

- **Have started a serious effort on simulation to** *<u>optimize* detectors and integrated electronics</u>
- **U l seaser test-stand d MTEST b ds an beam to develop and validate understanding of** individual contributions- e.g. Npe, S/N, spectral **response, anode to input characteristics,…**
- **Parallel efforts in simulating sampling electronics (UC, Hawaii) and detectors (UC,Saclay, Tom Roberts/Muons.inc). (, y,)**

Argonne Laser Lab

- • \bullet Measure Δ t between 2 MCP's (i.e root2 times ^σ); no corr for elect.
- \bullet Results: 408nm
	-
- •Results: 635nm) •
13388.3550.1561

• **Our way of proceding- use laser test-stand for development validation of simulation then move development,** Work in Progress **to testbeam for comparison with simulation with beam.**

- **Add Ritt and/or Varner sampling readouts (interleave 10 GS) –in works**
- **First test via SMA; then integrate chips onto boards?**
- **Development of 40 GS CMOS sampling in IBM 8RF (0.13micron)- proposal in draft (ANL, Chicago, Hawaii,** O rsay, Saclay)

- **10um pore MCPs (two in hand)**
- **Transmission-line anodes (low inductance- matched) in hand**
- 10/17/2008**ordered** • **Reduced cathode-MCP_IN MCP_OUT-anode gaps-**

Lyon Workshop on Picosecond Timing

•**ALD module with integrated anode and capacitive**

Electronics Simulation- Sampling
analog bandwidth on input at fixed S/N
and sampling/ABW ratio

Psec Large-area Micro-Channel Plate Panel (MCPP)- LDRD proposal to ANL (with Mike)
Pellin/MSD)

Electronics Simulation-development of -channel CMOS readout

Jerry's #'s re-visited : Solutions to get to <several psec resolution.

1 . TTS 3 8 (f TTS f 27) TTS: 3 . 8 psec (from a TTS o 27 psec

2 . Cos(theta) cherenk 3 3 psec _ .

3. Pad size 0.75 psec-

(i l ti)

4 El t i 3 4 4. Elec tronics . 4 psec –

fast sampling- show works to a fight of Circuity get < 1psec 49

Muon Cooling position/time station design- LDRD (ANL) proposal

Cartoon drawings showing the custom atomic-layer disposition, the small pores, and the custom anode configuration (left) and our proposed module frame (right)

- Next step is to make another Next step is to make anodes that give both position and time- hope is few mm and << 10 psec resolutions. This would allow systems of (say) 6" by 6" size with -100 channels- good first step.
- Muon cooling is a nice first application of psec tof- not to big, very important, savings of money.
- We have made a number of false starts and wrong turns (e.g. the IBM bipolar 200 GHz electronics), but the fundamentals look good-10/17/2008 Coo Coo Lyon Markshop of Picosecond Timing 51 don't see a hard limit yet.

K-Pi Separation over 1.5m

Assumes perfect momentumresolution (time res is better than momentum res!)

10/17/2008

Engineering Highlights

- •F.Tang (UChicago) designed Voltage Control Oscillator using IBM 0.13um SiGe BiCMOS8HP
- • More challenging - Time Stretcher chip (including ultra low timing jitter/walk discriminator & dual-slope ramping time stretching circuits etc.)
	- From simulations, accuracy not good enough (5-10 $\,$ psecs) F.Tang
	- Power concerns
- •NEW: Invented 2 new schemes - a) Multi-threshold comparators, b) 50 GHz 64-channel waveform sampling. Both schemes give energy and leading edge time.
- • Current plan: Save waveform and use multiple thresholds to digitize. Use CMOS (J.F. Genat, UChicago)
	- Dec meeting at UChicago with UChicago, ANL, Saclay, LBL & Hawaii, IBM and Photonis

MCP Best Results Previous Measurements:

- and the state of the state – Jerry Va'vra SLAC (Presented at Chicago Sep 2007)
	- \bullet Upper Limit on MCP-PMT resolution: σ _{MCP-PMT} ~ 5 ps

Burle/Photonis MCP-PMT 85012-501 (64 pixels, ground all pads except one) **(**

•**Using two 10 um MCP hole diameter** •**PiLAS red laser diode (635 nm)** •**1cm Quartz radiator (Npe ~ 50)**

- Takayoshi Ohshima of University of N –– Takayoshi Ohshima of University of Nagoya (Presented at SLAC Apr 2006)
	- \bullet Reached a σ _{MCP-PMT} ~ 6.2ps in test beam

•Use 2 identical 6 micron TOF detectors in beam (Start & Stop)

10**Beagones olution with qtz. Radiator (Npe ~ 50) Conditionery** Timing The Resolution with qtz. Radiator (Npe ~ 50)

R&D of MCP-PMT Devices

We are exploring a psec-resolution TOF system using micro-channel plates (MCP's) incorporating:

 \triangleright A source of light with sub-psec jitter, in this case Cherenkov light generated at the MCP face (i.e. no bounces): Different thicknesses of Quartz Radiator

^¾Short paths for charge drift and multiplication: Reduced gap

 \triangleright A low-inductance return path for the high-frequency component of the si gnal:

^¾Optimization of the anode for charge-collection over small transverse distances:

^¾The development of multi-channel psec-resolution custom readout electronics directly mounted on the anode assembly: ASIC, precision clock distribution

> Smaller pore size: Atomic Layer Deposition

10/17/2008

Atomic Layer Deposition

- •• ALD is a gas phase chemical process used to create extremely thin coatings.
- • **Current 10 micron MCPs have pore spacing of 10,000 nm**. Our state of the art for Photonis MCPs is 2 micron (althou gh the square MCPs are 10 micron).
- **We have measured MCP timing resolution folk-lore is that it depends strongly on pore size, and should improve** substantially with smaller pores (betcha).

M.Pellin, MSD

Karen Byrum slide, mostly

10/17/2008

10/17/2008

FY-08 Funds –ANL

Hamamatsu PLP-10 Laser (Controller w/a laser diode head) 405 & 635nm head.

P l ^t l jitt < 10 Pulse to pulse jitter 10psec (Manufacture Specs)

Lens to focus

Diaphram with beam on MCP shutter to next box

Electronics

.