

Update of the SAM chip performances

MERACH, MARINE MARINE

eric.delagnes@cea.fi breton@lal.in2p3.fr

Séminaire DRT/LIST 08/09/08 SACLAY.

The ARS0 chip: first GS/s sampler designed @ Saclay

- Gsample/s time expander chip originally developed for the ANTARES experiment based in the Mediterranean Sea.
- Based on sampling-DLL technique :

lrfu

saclay

The SAM (swift analog memory) chip for the HESS2 experiment

- Same functionalities than ARS0 but with higher performances:
- High RO speed Gsample/s time expander chip.
 - Required to treat the extended dynamic of the new telescope

(C)

NIM A, Volume 567, Issue 1, p. 21-26, 2006

Number of ch2 differentialNumber of cells/ch256BW > 250 MHz700MHz-2.5GHzSampling Freq700MHz-2.5GHzHigh Readout Speed>16 MHzSimultaneous R/WNoSmart Read pointerYes (integrate a 1/Fs step TDC)Few external signals (<> from MATACQ).Many modes configuration @ power onLow cost for medium size prod=> AMS 0.35 µm

6000 ASICs manufactured,tested and delivered in Q2 2007

Principle of the SAMPLING MATRIX

Advantages/ Drawbacks of the Sampling MATRIX structure

• Short DLL:

- smaller jitter.

saclav

lrfu

- junction between DLLs.
- potential coupling between Analog Signal and DLL control voltage.
- 1 servo control of Delay / Col: => high stability.
- ABORATOIRE LACCELERATEUR
 - Analog Input Buffering:
 - High input impedance:
 - Linearity.
 - No DC input current
 - No Ringing. Flat response
 - Power consumption.
 - BW limitation
 - Analog Bus Split in divisions : lines
 - shorter analog bus :
 - More uniform bandwidth.
 - less analog delay along the bus.
 - Parallel readout => faster readout.
 - 1 buffer / line :
 - Better analog BW/power consumption FOM.
 - Spread of the buffer bandwidth.
 - Offset between lines (corrected by DAC on-chip).
 - Initial Philosophy: No Off-chip correction (pedestal, amplitude, time)=> limit external computing.

Fixed Pattern Apperture Jitter

saclay

- Device Mismatches of components in the delay chain :
 - => spread of delay duration.
 - => error on the sampling time.
 - => fixed for a given tap => fixed pattern apperture jitter
 - spread of single delays => time DNL.
 - cumulative effect => time INL.
 - systematic effect => possible correction if cell index is known Drawbacks: computing power + non equidistant samples (FFT).
 => Good calibration required.

Irfu2 sources of aperture jitter :

 $(C \in C)$

saclay

- Random aperture jitter (RAJ).
- Fixed Pattern Aperture Jitter (FPJ).

Inside the DLL, jitters are cumulative. Assuming there is no correlation: For RAJ, the aperture jitter @ tap j will be

 $\sigma_{Rj} = \sqrt{j} \cdot \sigma_{Rd}$ if σ_{Rd} is the random jitter added by a delay tap

• For FPJ $\sigma_{FPj} = \sqrt{j} \cdot \sigma_{FPa}$ for a free running system

$$\sigma_{FPj} = \sqrt{\frac{j.(N-j)}{N}} \sigma_{FPj}$$

if the total delay is servo-controlled

if σ_{FPd} is the random jitter added by a delay tap (σ DNL) and N is the DL length.

Short DL => Less Jitter (both kinds)

Analog Bus is a RC delay line:

 \Rightarrow Delay depends on the sampling cell position. \Rightarrow The overall Bandwidth also does, especially if it is not limited by an input amplifier or that of the intrinsic sampling cell.

Short analog busses are better for BW uniformity => segmentation

New Results On the SAM chip.

- lrfu

saclay

- SAM designed for HESS-2 experiment:
 - low cost in medium volume (11mm²/AMS 0.35)
 - memory depth made to match the trigger latency (256 cells)
 - BW required ~ 250MHz.
 - Fsample: 1GS/s -> 2GS/s.
 - Characterized on a test bench based on the HESS-2 FEC with limited capabilities

NAME	Value	Unit
Power Consumption	300	тW
Sampling Freq. Range	<1to 2.5	GS/s
Analog Bandwidth	250-300	MHz
Maximum event readout Frequency	>800	kHz
Fixed Pattern noise	0.4	mV rms
Total noise	0.65	mV rms
Maximum signal (limited by ADC range)	2	v
Dynamic Range	>11.6	bits
Crosstalk	<3	per mil
Integral non linearity	< 1	%
Sampling Jitter	<40	ps rms

performances as published in the NIM paper

- New test bench = USB 2 powered board designed @ LAL, permits
 - understanding the real limits of the chip before starting the design for CTA.
 - the evaluation for fast timing application (demonstrator for reflectometry)

New Results

œ

saclay

 \Rightarrow 12.6 bits dynamic range.

• Input Dynamic range can go up to 4V differential

- Max Sampling Frequency > 3.2 GS/s
- 450 MHz -3dB BW (for a full range signal):
- ~800 MHz roll off point
 - convolution of SAM + on-board 1GHz amplifier.
 - no ringing.

SAM: Bode plots (3.2 GS/s) Half dynamic range sinewave

E. Delagnes

WORKSHOP on ps Timing/ Lyon 15/10/08.

13

New Results: Short pulse sampling

- Original target application of the board.
- 2 mm precision reached (in repetitive mode).

Timing resolution .

saclay

- **First, without any correction**
- 2 methods used for global resolution measurement:
 - measurement of ENOB on sinewaves.
 - measurement with pulses.

ENOB measurement.

- ENOB = (10 Log (sinus power / residues power) -1.76)/6.02. $C \cap \hat{C}$
- Depends on input sinewave frequency, noise & jitter. saclay

SineWave Freq (Hz)

E. Delagnes

WORKSHOP on ps Timing/ Lyon 15/10/08.

Timing measurement with pulses.

- $\sigma_{delay} = 35 ps rms => 25 ps for each pulse$
- Consistent with ENOB measurement.
- Pulse timing can be improved by using more than 2 samples => To Be Done

Extraction of fixed pattern and random jitter.

- Method:

A B O R A T O I R I PE L'ACCÉLÉRATEUI

lrfu

- 197MHz sinewave sampled by SAM
- Search of zero-crossing segment => length and position (cell).
 - Histogram of length[position]:
 - propor. to time step duration (assuming sine = straight line).
 - small bias due to sinewave curvature (<1.7ps rms/ 197MHz sine)
 - mean_length[position] = fixed pattern effect
 - sigma_length[position] = random effect

- With random trigger : jitter floor ~ 2ps rms but with large jitter on "transition" samples (32 ps). Mean jitter ~ 5 ps
- If trigger on sinewave => jitter peak decreases to 5ps. Mean jitter ~ 2.5 ps rms
- "Nearly" understood (coupling between analog signal and DLL command).
- Will be corrected on future chips/boards. Might even be suppressed on this one.

Conclusion

• The new USB board allowed to push the SAM chip towards its limits.

• Timing measurements show a timing resolution of ~25 ps rms without any offchip correction.

- Timing resolution with correction and using several samples under study.
- Very small random jitter (few ps).
- Some work still has to be done to optimize the board performances.
- Tests have already given us new guidelines for future chips to improve timing performances.
- Next circuit will be submitted beginning 2009: same sampling frequency, same technology, larger depth => target = CTA experiment
- We are now convinced that a single chip can hardly be optimum for all applications (depth vs time precision).
- Upgraded version of the SAM-USB board will soon be available.
 - Can be used for low cost fast detector testing.
 - Will be compatible with the next generation chips
 - Will be available in a small plastic case