Gas sTOF, or GasToF™

L. Bonnet, B. Florins, T. Pierzchala, N.Schul and KP

CP3 and Cyclotron Research Center, Université Catholique de Louvain

Intro: Why GasToF GasToF prototyping Irradiations and cosmic rays tests **Outlook**

http://www.uclouvain.be/fynu

Why need s(uperfast)ToF?

Z-by-timing **is crucial for running at high LHC luminosity, for suppressing accidental** $\mathbf b$ ackgrounds:

If δ**t = 10 ps can be achieved for a single ToF, then ^z -vertex resolution is 2 mm vertex (from time difference for two arms) to be compared with ~50 mm RMS of IR.**

Note: Background suppression power is ~ inversely proportional to resolution of ToF!

sToF: LHC challenges

Achieve best possible resolution in harsh LHC environment:

- **very high event rate – up to and above 10 MHz**
- **hi gh irradiation levels – ^u p to 10¹⁴ p/cm 2 / y**
- **at high LHC luminosity have to face multi-hit conditions (>1 particle to detect every 25 ns)**
- **(iii i i) (poss i b i l ity to prov ide tr igger**

Good news: Small area detectors (~3x1 cm 2) with limited number of channels are needed -> push performances to limits

Measurement Principle

The LHC beams (on the right of CMS):

Propose to use moving (Hamburg) pipe concept. First preprototype produced for CERN tests (*B.Florins, UCLouvain).*

ga**s**tof: Basic idea

Consider gas Cerenkov:

- **Very simple and robust design**
- Very thin and light detector can be used before **the tracking part**
- **(Very) radiation hard**
- **High energy threshold**

Basic formula:

$$
N_{pe} \approx 100 \sin^2\theta_c \text{ L [cm]}
$$

To estimate position sensitivity estimate average light spot radius 〈**r**〉**, at radiator exit:**

$$
\langle \texttt{r} \rangle \!\approx 0.5~\texttt{L}~\texttt{tan}\theta_c~\approx~\texttt{sin}\theta_c~\texttt{L}/2
$$

$$
N_{pe} \approx 200 \langle r \rangle \text{[cm]} \sin \theta_c
$$

gastof: Favorite radiator

GasTof

Simulations with Burle (raytracing)

Finally two detectors (in sequence, each with 16 anodes combined) put into comics - some real four events in GASTOFs:

Conclusions from Photonis 1st prototype:

• **Very robust and solid detector, regularly used as a test-beam 'working horse'**

• **Limited time resolution [~] 35 ps (for ~8 pe) because only 25** μ**m pore tubes available…**

• **Very interested by 10** μ**m pore tubes -> run Gastof as a Cerenkov image detector: read out 64 anode pads and reconstruct Cerenkov spot – eg for <N eg. <Npe > = 9 and 30 ps per channel per 1 pe might get 10 ps resolution, and have multi-hit g p capability!**

HAMAAMATSU

MICROCHANNEL PLATE-PHOTOMULTIPLIER TUBE (MCP-PMTs) **R3809U-50 SERIES**

Gastof **with 6** μ**^m pore MCP PMT**

Compact MCP-PMT Series Featuring Variety of Spectral Response with Fast Time Response

FFATURES

MHigh Speed Rise Time: 150ps T.T.S. (Transit Time Spread)¹): ≤ 25ps(FWHM) **OLow Noise** Compact Profile

Useful Photocathode: 11mm diameter (Overall length: 70.2mm Outer diameter: 45.0mm)

Problems:Small 11 mm cathode –> use spherical > mirror to focus light on MCP-PMT;

Gas tightness – PMT l kcase leaks.

Pico-sec Workshop. ULyon, Oct'08 K. Piotrzkowski - UCLouvain **15**

 \bullet nam

udora - [Intrée] De Euclid]

 \bullet was \circ

 \bullet MESAGES

Laser stand

• **Picosecond laser driver (PiLas) with UV laser head PIL040 - 408 nm, 32 ps pulse FWHM and 3 ps jitter according to specs…**

Crucial also for design and development of electronics as amplifiers, CFDs and DAQ. Good for simulating LHC high event rates – runs up to 1 MHz repetition rate.

Unavoidable irradiation due to *diffractive proton s* **simulated with** Hector **: J.de Favereau and X. Rouby + KP (Louvain):**

Fig. 27: Number of proton hits per year due to the process $pp \rightarrow pX$ for 20 fb⁻¹ integrated luminosity. Protons were generated with PYTHIA 6.2.10 (single diffraction process 93) and tracked through the beam lattice with HECTOR.

Irradiation of Hamamatsu PMT

The last - $4th$ irradiation of PMT R3809U-50 #XC0113 with neutron at UCL (spring 2008)

The average measured dose of $4th$ irradiation : $5.11\text{kGy} + 0.08\text{kGy} \approx 2.21\text{E} + 14\text{ n/cm2}$ (1MeV)

Finally the total dose:

 9.62 kGy +/- 0.11 kGy $\sim 4.16E+14$ n/cm2 (1MeV)

Intense fast neutron beam

No degradation observed up to 10¹³ n/cm 2

Gain drops by 50%, rise-time unchanged at 2.10¹⁴ n/cm 2

Final dose of at 4.10¹⁴ n/cm 2, results in preparation but have problems with jitter measurement -> plan to > split light and measure 2 PMTs at a time

Scope Analysis (G1-G2)

Threshhold discriminaton

CFD algo simulated

Target detector resolutions achieved?

Pico-sec Workshop. ULyon, Oct'08 K. Piotrzkowski - UCLouvain **22**

ULTRA FAST PHOTOMULTIPLIERS **Photek**

New collaboration with PHOTEK:

- **Received two tubes (no gas leak!)**

Pico-sec Workshop. ULyon, Oct'08 K. Piotrzkowski - UCLouvain **28**

Gastofs **with Photek PMTs**

Pico-sec Workshop. ULyon, Oct'08 **K. Piotrzkowski - UCLouvain 1999 29**

Hot off the press – first waveforms from Gastof **with Photek tubes – very fast signals with rise time determined by 3 GHz scope BW…**

Pico-sec Workshop. ULyon, Oct'08 K. Piotrzkowski - UCLouvain **30**

By end of year 2008 two new (one 2 x HPK + one 2 ^x Photek) prototypes characterized:

-> R&D for initial set of Gastof detectors will be finalized, incl. irradiations

-> focus then mostly on the electronics/DAQ aspects for Gastof (including Photonis PMT based multi -anode system) anode

-> continue with Photek towards lon ger term R&D for sub 10 ps resolution detectors

The TCSPC Power Package

Four Channel Time-Correlated Single Photon Counting Module

- ▶ Four Completely Parallel TCSPC Channels
- Ultra-High Data Throughput
- Overall Count Rate 32 MHz
- Channel Count Rate 8 MHz (Dead Time 125ns)
- Dual Memory Architecture: Readout during Measurement
- Reversed Start/Stop: Repetition Rates up to 200 MHz
- Electrical Time Resolution down to 8 ps FWHM / 5 ps rons
- Channel Resolution down to 813 fs
- ▶ Up to 4096 Time Channels / Curve
- Measurement Times down to 0.1 ms
- Software Versions for Windows 95 / 98 / NT
- ▶ Direct Interfacing to most Detector Types
- Single Decay Curve Mode
- ▶ Oscilloscope Mode
- ▶ Segential Recording Mode
- Spectrum Scan Mode with 8 Independent Time Windor
- Continuous Flow Mode for Single Molecule Detection
- ▶ FIFO / Time Tag Mode for Single Molecule Detection

SPC-134

Longer perspectives

• **Is ~ 1 ps all-inclusive resolution possible? Can use streak cameras?**

Note: Need very high precision reference clock distribution NO need for segmented detectors distribution. detectors – multi-hit events no problem but has to run at high 40 MHz repetition rate… and large light **yield mandatory.**