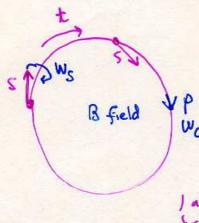
Lecture 3

- · Understanding the pu What is it? why? heavier? measure magnet moment
- · two neutrinos

 Ve, 2m?

 First > beam
- colliders: e[†]e[¯] @ SLAC
 making resonances J/ψ
 producing γ's.

Muon magnetic moment photon couples To the magnetic moment compare e to m? is there new physics in u? electromagnetic + weak + strong corrections Dirac elementary particles


Anomalous contribution

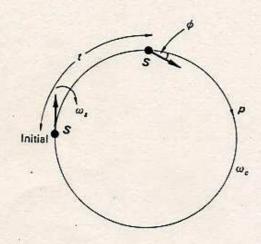
Measure

+his

precisely

Make muon storage ring

particle goes around w/ freq. Wc Spin processes w/ freq. Ws


orane Ws = ReB [1 + 19-

Then muon decays

ルラをでか

Ø=LWs-We)t

Electromagnetic interactions and form factors | 5.1

190

Wc - cyclotron = eB
frequency mc

Ws - precession - geB
frequency 2 mc

Fig. 5.2 For a particle of $g \neq 2$ in a uniform magnetic field, the spin vector s, initially aligned with the momentum p, will "lead" by a phase angle ϕ at later times—see Eq. (5.7).

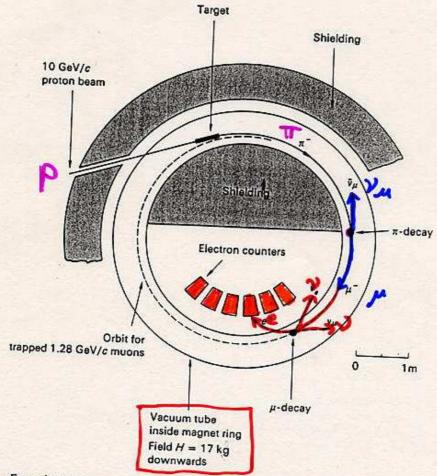


Fig. 5.3 Experimental arrangement employed in determination of the muon g-factor using a "muon storage ring" (Bailey et al., 1968)

192 Electromagnetic interactions and form factors | 5.1

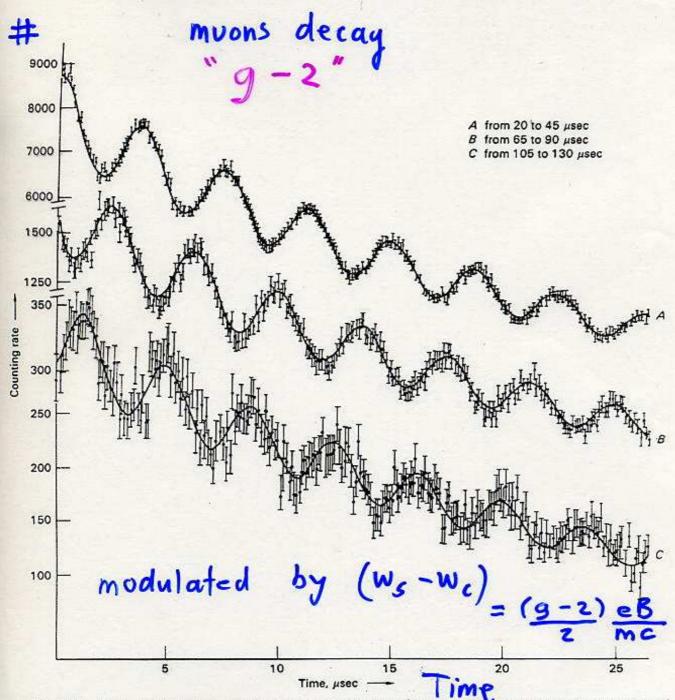


Fig. 5.5 Time dependence of the counting rate of electrons observed with the apparatus of Fig. 5.3. The general exponential decrease corresponds to a lifetime $\tau=26~\mu{\rm sec}$ in the laboratory system. The rate is modulated by the frequency $(\omega_s-\omega_c)$, which measures (g-2).

period of the anomalous moment $2\pi/(\omega_s - \omega_c)$ is about 3.7 μ sec, so that, by using high energy muons, the modulation can be followed out over some thirty periods and measured with great accuracy. The field H is calibrated by means of

This year, new 9-2 @ Brookhaven Lab

1.3 parts/million

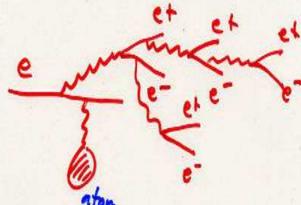
of measured to 4 parts/billion

but an more sensitive to new physics

because (my) ~ 40,000.

TWO NEUTRINOS?

PONTE CORVO puzzles over e, m.
Schwarz wants to see Fermi break down


Fermi

effective theory intermediate vector boson

Both thought of 2 beams.

We knew Rate (unex) ~0, but

· electron showers in matter

loses energy early and often

muons ionize but penetrate through steel identify muons

track track

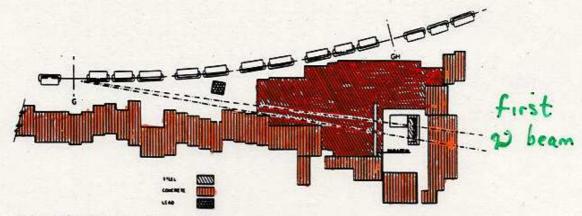


Figure 1. Plan view of the A.G.S. neutrino experiment.

BROOKHAVEN, NY.

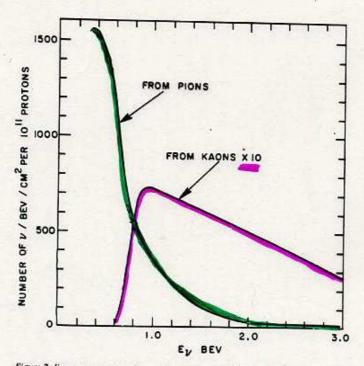


Figure 2. Energy spectrum of neutrinos as expected for A.G.S. running at 15 GeV.

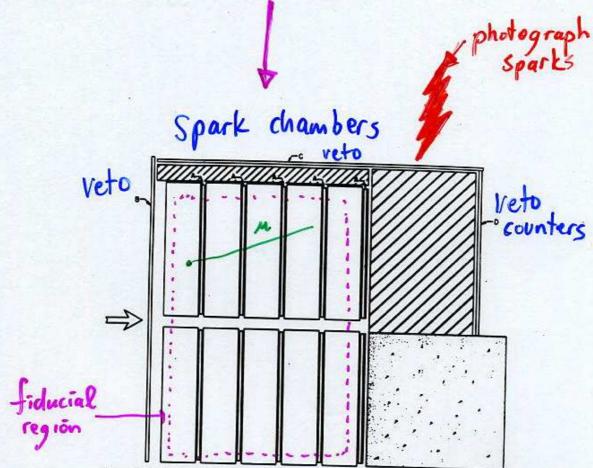


Figure J. Spark chamber and counter arrangement. This is the front view with neutrinos entering on the left. A are the trigger counters. B, C and D are used in anti-coincidence.

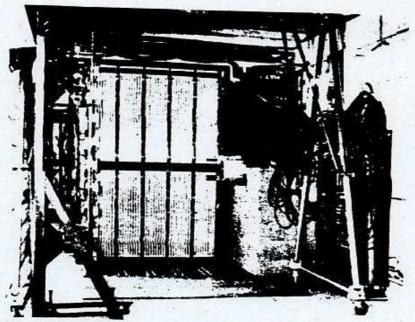
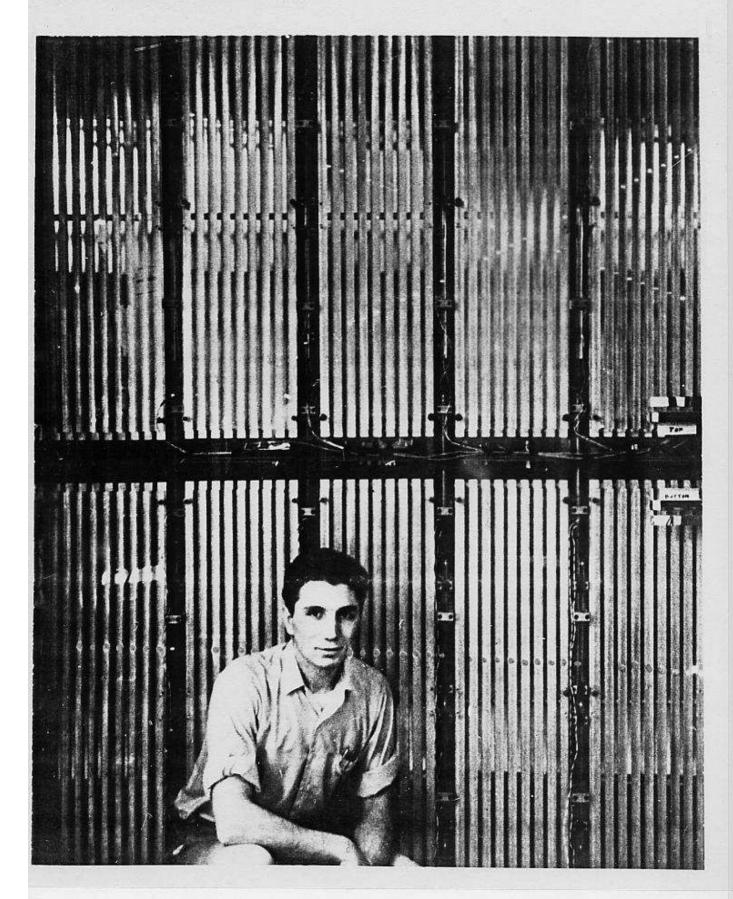
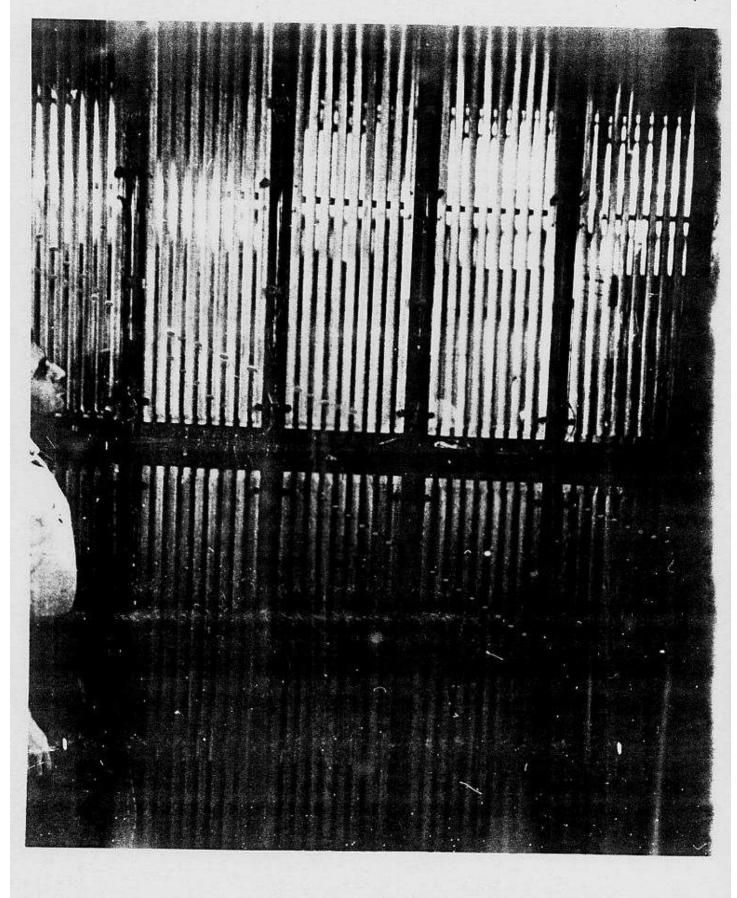
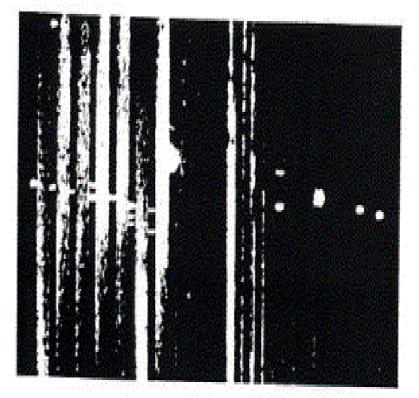
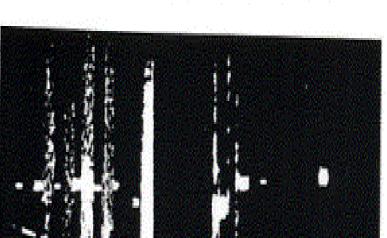




Figure 4. A photograph of the chambers and counters.


2 beam not hot



Muon Pm >540 В

This is what electrons look like

A

3.

В

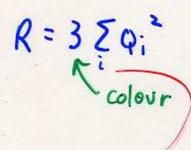
Results of w beam experiment

- . 113 events total
 - · 34 single muon events p>300 MeV

· 22 vertex events

- .49 short single tracks p2300 MeV (neutron background) <4 sparks
- · 8 shower events 6 with p>300 MeV
- > Not cosmic rays check by turning off beam
- > Not neutron induced uniformity in detector
- Due to TI, K decay block of steel early in beam

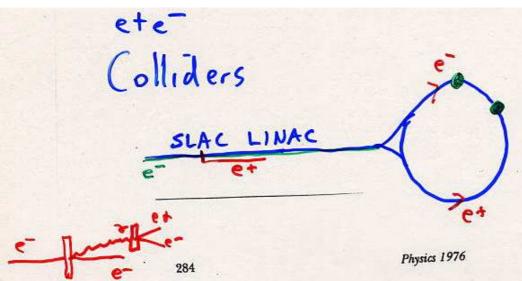
NOT ENOUGH SHOWER EVENTS > NO YE >> Y's from IT >MY ARE DIFFERENT

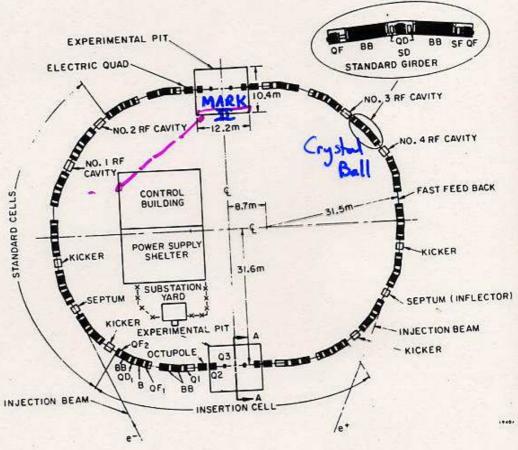

ete colliders

One simple measurement R.

New kind of detector.

$$\sigma = \frac{\pi}{3} \left(\frac{t Q_{Cd}}{E} \right)^2$$


above threshold



i sum over quarks u, d, s, c, b, t

. The ratio R as of July 1974.

$$R = 3 \left(\left(\frac{2}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 \right)$$

1. Schematic of the SPEAR storage ring.

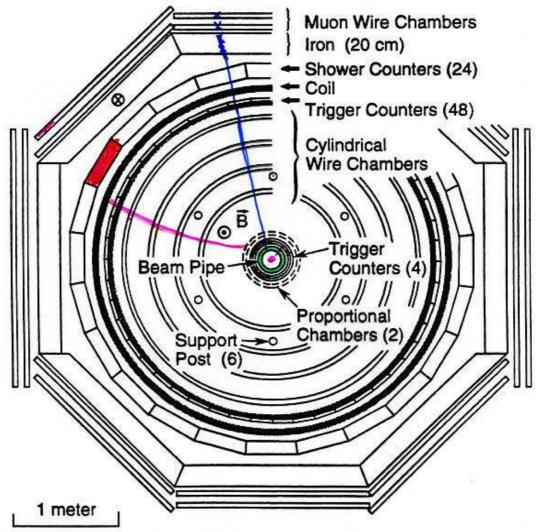


Figure 5. The initial form of the Mark I detector.

ete Mark I detector at SLAC hermetic,

Typical J/4 event in tracking chamber

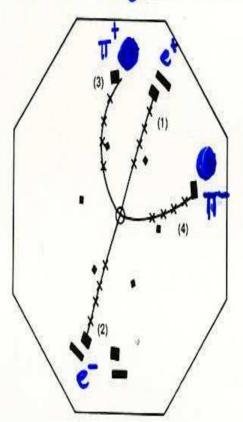


Fig. 4.4. Example of the decay $\psi(3.7) \to \psi(3.1) + \pi^+ + \pi^-$ observed in a spark chamber detector. The $\psi(3.1)$ decays to $e^+ + e^-$. Tracks (3) and (4) are due to the relatively low energy (150 MeV) pions, and (1) and (2) to the 1.5 GeV electrons. The magnetic field and the SPEAR beam pipe are normal to the plane of the figure. The trajectory shown for each particle is the best fit through the sparks, indicated by crosses. (From Abrams *et al.* 1975.)

Ψ -> Ψ π+π-Lyete-

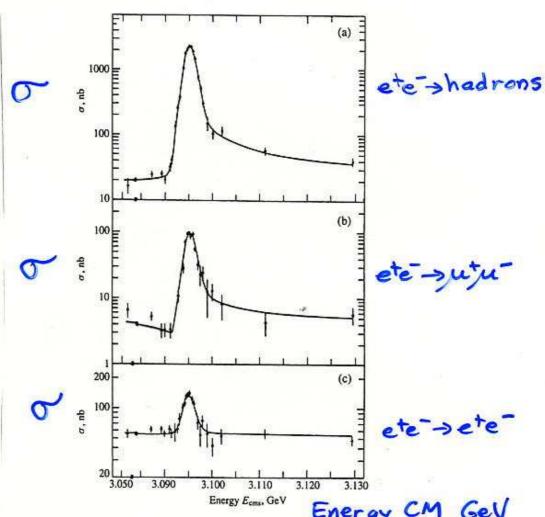
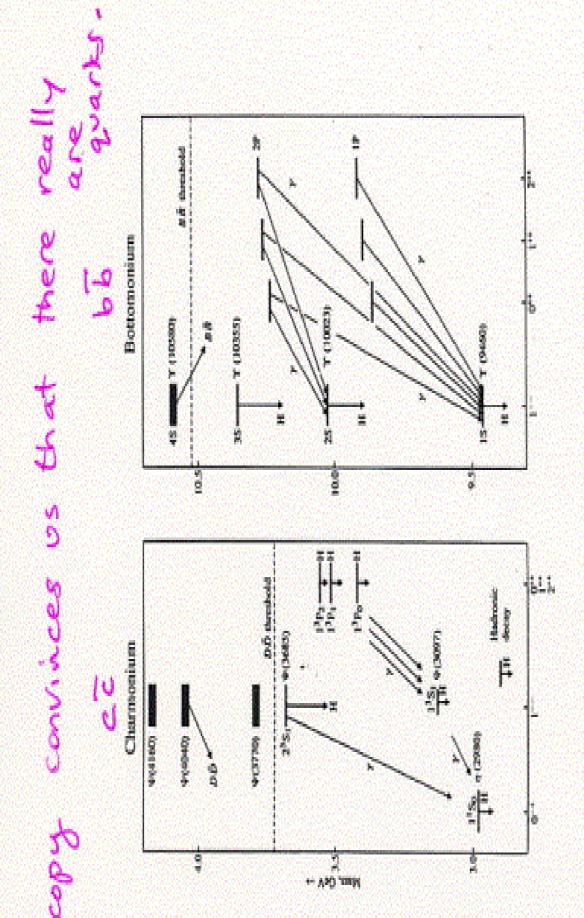
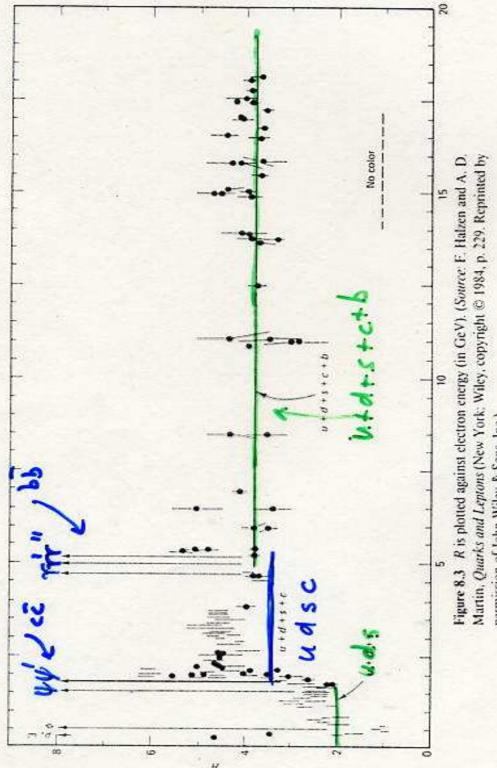
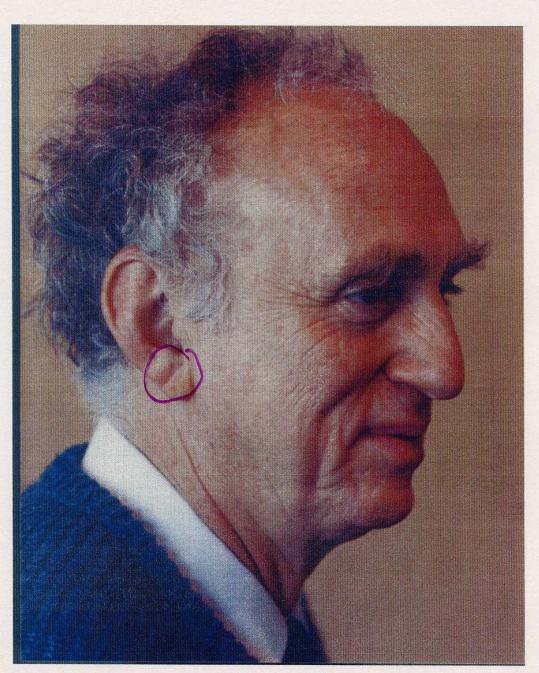
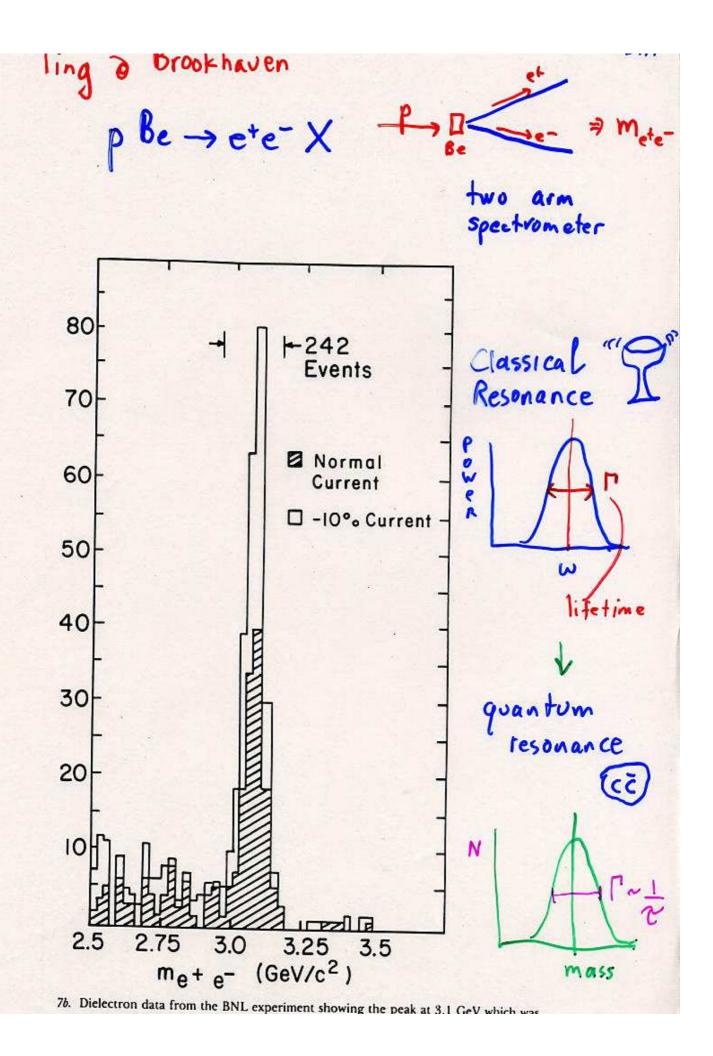




Fig. 4.1. Results of Augustin et al. (1974) showing the observation of the J/ψ resonance of mass 3.1 GeV, produced in e^+e^- annihilation at the SPEAR storage ring, SLAC. (a) $e^+e^- \to \text{hadrons}$; (b) $e^+e^- \to \mu^+\mu^-$, $|\cos \theta| \le 0.6$; (c) $e^+e^- \to e^+e^-$, $|\cos \theta| \le 0.6$.

sitronium, charmonium and bottomonium. Note the changes in scale for positronium. Only in e+e" annihilation experiments. Note that the atomic physics convention is to label the while for the charmonium and bottomonium states the nuclear physics nomenclature IP is



permission of John Wiley & Sons, Inc.)


3.24

My advisor

Martin Perl T

Try to understand e-M What is different? Mass, Lepton

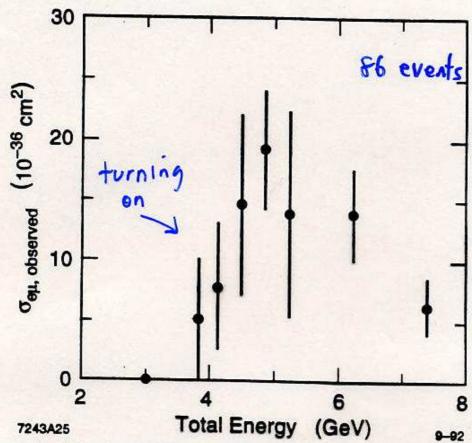


Figure 6. From Perl et al. (1975b): "The observed cross section for the signature eµ events from the Mark 1 experiment at SPEAR. This observed cross section is not corrected for acceptance. There are 86 events with a calculated background of 22 events."

ルー・モンシャ ⇒ Look for heavy M とうルデルで Look for
ete → ですで A デルンで Clean signature

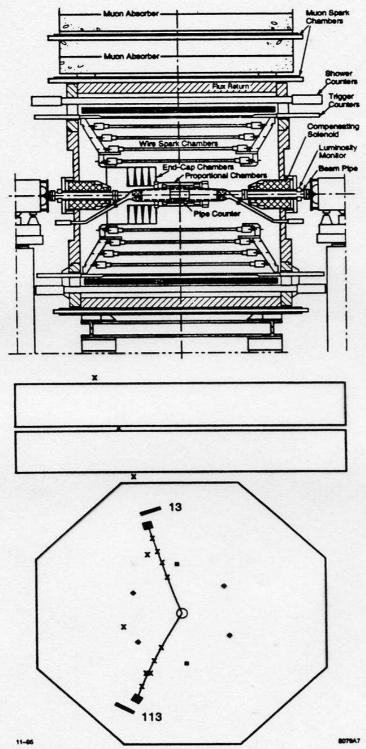
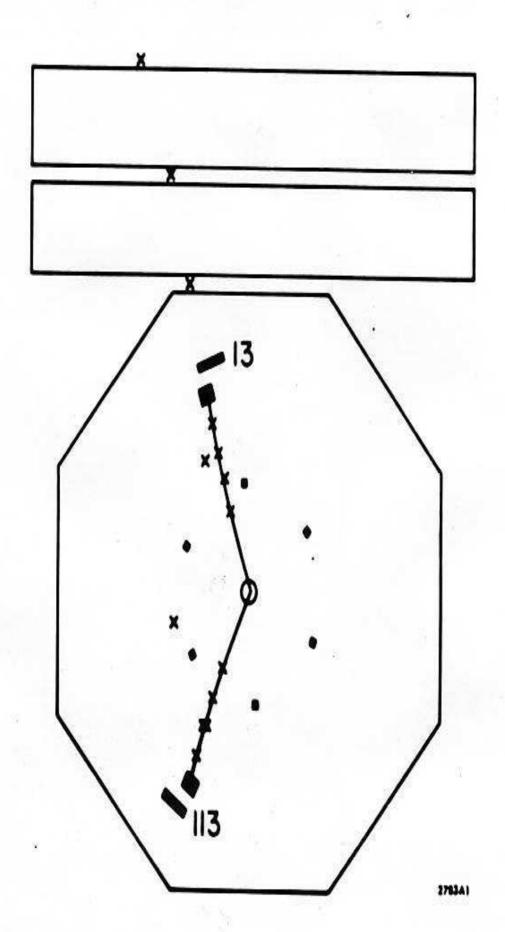



Figure 7. (a) The Mark I detector with the muon tower: (b) one of the first e μ events using the tower. The μ moves upward through the muon detector tower and the e moves downward. The numbers 13 and 113 give the relative amounts of electromagnetic shower energy deposited by the μ and e. The six square dots show the positions of longitudinal support posts of the magnetostrictive spark chamber used for tracking.

Tarticle vala vroup 1 VG

http://pdg.lbl.gov

Look at each best measurement

eg. mvon mass 105.658389±0.000034

how is it measured?

Value document technique charge comment

best mariam 82 PKL 49, 993 look it up in library 1.000024±0.000078 BARDIN 84 CNTR • • • We do not use the following data for averages, fits, limits, etc. • • • 1.0008 ±0.0010 BAILEY 79 CNTR Storage ring 1.000 ±0.001 63 CNTR Mean life μ^+/μ^- MEYER

$\left(\tau_{\mu^+} - \tau_{\mu^-}\right)/\,\tau_{\rm average}$

A test of CPT invariance. Calculated from the mean-life ratio, above.

DOCUMENT ID

 $(2\pm8)\times10^{-5}$ OUR EVALUATION

μ MAGNETIC MOMENT ANOMALY

 $\mu_{\mu}/(e\hbar/2m_{\mu})-1=(g_{\mu}-2)/2$ For reviews of theory and experiments, see HUGHES 85, KINOSHITA 84, COMB-LEY 81, FARLEY 79, and CALMET 77.

VALUE (units 10 ⁻⁶)	DOCUMENT IL)	TECN	CHG	COMMENT
1165.9230±0.0084	COHEN	87	RVUE		1986 CODATA
• • • We do not use the follow	ving data for averag	es, fits	, limits,	etc. •	value • •
1165.910 ±0.011	8 BAILEY	79	CNTR		Storage ring
1165.937 ±0.012	8 BAILEY	79	CNTR	177	Storage ring
1165.923 ±0.0085	⁸ BAILEY	79	CNTR	±	Storage ring
1165.922 ±0.009	⁸ BAILEY	77	CNTR	±	Storage ring
1166.16 ±0.31	BAILEY	68	CNTR	±	Storage rings
1162.0 ±5.0	CHARPAK	62	CNTR	+	00.

 8 BAILEY 79 is final result. Includes BAILEY 77 data. We use μ/p magnetic moment ratio = 3.1833452 and recalculate the BAILEY 79 values. Third BAILEY 79 result is first two combined.

$(g_{\mu^+}-g_{\mu^-})\,/\,g_{ m average}$

A test of CPT invariance. VALUE (units 10-8) DOCUMENT ID -2.6 ± 1.6 BAILEY 79 ution: C. Caso et al. (Particle Data Group), European Phys Jour C3, 1 (1998) and 1999 partial update for edition 2000 (URL: http://pdg.lbl.gov)

$$J=\frac{1}{2}$$

μ MASS

The mass is known more precisely in u (atomic mass units) than in MeV (see the footnote to COHEN 87). The conversion from u to MeV, 1 $u = 931.49432 \pm 0.00028$ MeV, involves the relatively poorly known electronic charge.

Where m_{μ}/m_e was measured, we have used the 1986 CODATA value for $m_e=0.51099906\pm0.00000015$ MeV.

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
105.658389±0.000034	¹ COHEN	87	RVUE		1986 CODATA value
• • • We do not use the follow	ring data for averages	, fits	, limits,	etc. •	THE RESERVE OF THE PARTY OF THE
105.65841 ±0.00033	² BELTRAMI	86	SPEC		Muonic atoms
105.658432±0.000064	³ KLEMPT	82	CNTR	+	Incl. in
105.658386±0.000044	4 MARIAM	82	CNTR	+	MARIAM 82
105.65856 ±0.00015	5 CASPERSON	77	CNTR	+	
105.65836 ±0.00026	⁶ CROWE	72	CNTR		
105.65865 ±0.00044	7 CRANE	n	CNTR		

¹ The mass is known more precisely in u: $m = 0.113428913 \pm 0.000000017$ u. COHEN 87 makes use of the other entries below.

 $^{^{2}}$ BELTRAMI 86 gives $m_{\mu}/m_{e} = 206.76830(64)$.

 $^{^3}$ KLEMPT 82 gives $m_{\mu}/m_e = 206.76835(11)$.

⁴ MARIAM 82 gives m../m. = 206.768259(62).

other ν_j which mixes strongly in ν_μ and has sufficiently small mass that it can occur in the respective decays. (This would be nontrivial only for $j \geq 3$, given the ν_e mass limit above.) Results based upon an obselete pion mass are no longer shown; they were in any cass less restrive than ASSAMAGAN 96.

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
<0.19	90	¹ PDG	99	SPEC	$m^2 = -0.003 \pm 0.023$
< 0.17	90	² ASSAMAGAN			$m^2 = -0.016 \pm 0.023$
• • • We do not us	e the follow	ving data for averages	, fits	, limits,	etc. • • •
<0.15		3 DOLGOV	95		Nucleosynthesis
<0.48		⁴ ENQVIST	93	COSM	Nucleosynthesis
< 0.003		5,6 MAYLE	93	ASTR	SN 1987A cooling
< 0.025-0.030		6,7 BURROWS	92	ASTR	SN 1987A cooling
<0.3		8 FULLER	91	COSM	Nucleosynthesis
<0.42		⁸ LAM	91	COSM	Nucleosynthesis
< 0.028-0.15		9 NATALE	91	ASTR	SN 1987A
<0.028		⁶ GANDHI	90	ASTR	SN 1987A
<0.014		6,10 GRIFOLS		ASTR	SN 1987A
<0.06		6,11 GAEMERS	89		SN 1987A
<0.50	90	12 ANDERHUB	82	SPEC	$m^2 = -0.14 \pm 0.20$
<0.65	90	CLARK	74	ASPK	$K_{\mu 3}$ decay
					ш

¹ PDG 99 result is based on OUR AVERAGE for the π^{\pm} mass and the ASSAMAGAN 96 value for the muon momentum for the π^{+} decay at rest. The limit is calculated using the unified classical analysis of FELDMAN 98 for a Gaussian distribution near a physical boundary. WARNING: since m^2 is calculated from the differences of large numbers, it and the corresponding limits are extraordinarily sensitive to small changes in the pion mass, the decay muon momentum, and their errors. For example, the limits obtained using the JECKELMANN 94, LENZ 98, and the weighted averages are 0.15, 0.29, and 0.19 MeV, respectively.

² ASSAMAGAN 96 measurement of p_{μ} from $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ at rest combined with JECK-ELMANN 94 Solution B pion mass yields $m_{\nu}^{2} = -0.016 \pm 0.023$ with corresponding Bayesian limit listed above. If Solution A is used, $m_{2} = -0.143 \pm 0.024$ MeV². Replaces ASSAMAGAN 94.

³ DOLGOV 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium below T_{QCD} for wrong-helicity Dirac neutrinos (ENQVIST 93, FULLER 91) to set more stringent limits.

⁴ ENQVIST 93 bases limit on the fact that thermalized wrong-helicity Dirac neutrinos would speed up expansion of early universe, thus reducing the primordial abundance. FULLER 91 exploits the same mechanism but in the older calculation obtains a larger production rate for these states, and hence a lower limit. Neutrino lifetime assumed to exceed nucleosynthesis time, ~ 1s.

- 5 MAYLE 93 recalculates cooling rate enhancement by escape of wrong-helicity Dirac neutrinos using the Livermore Supernova Explosion Code, obtains more restrictive result than the "very conservative" BURROWS 92 limit because of higher core temperature.
- ⁶ There would be an increased cooling rate if Dirac neutrino mass is included; this does not apply for Majorana neutrinos. Limit is on $\sqrt{m^2_{\nu_{\mu}} + m^2_{\nu_{\tau}}}$, and error becomes very large if ν_{τ} is nonrelativistic, which occurs near the lab limit of 31 MeV. RAJPOOT 93 notes that limit could be evaded with new physics.

7 BURROWS 92 limit for Dirac neutrinos only.

- 8 Assumes neutrino lifetime >1s. For Dirac neutrinos only. See also ENQVIST 93.
- ⁹ NATALE 91 published result multiplied by $\sqrt{8}\sqrt{4}$ at the advice of the author.

10 GRIFOLS 90B estimated error is a factor of 3.

- 11 GAEMERS 89 published result (< 0.03) corrected via the GANDHI 91 erratum.
- 12 ANDERHUB 82 kinematics is insensitive to the pion mass.

$m_{\nu_2} - m_{\overline{\nu}_2}$

Test of CPT for a Dirac neutrino. (Not a very strong test.)

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages, f	fits	limits,	etc. • • •
<0.45	90	CLARK 7	4	ASPK	$K_{\mu 3}$ decay

ν_2 (MEAN LIFE) / MASS

These limits often apply to ν_{τ} (ν_{3}) also.

VALUE (s/eV)	CL% EVT	S	DOCUMENT ID	_	TECN	COMMENT
>15.4	90		13 KRAKAUER	91	CNTR	$ u_{\mu}$, $\overline{ u}_{\mu}$ at LAMPF
• • • We do not u	se the followin	g (data for averages, fits	, lim	its, etc.	• • • • • • • • •
			¹⁴ BILLER	98		$m_{\nu} = 0.05-1 \text{ eV}$
$> 2.8 \times 10^{15}$			15,16 BLUDMAN	92	ASTR	$m_{\nu} < 50 \text{ eV}$
none 10 ⁻¹² - 5	× 10 ⁴		¹⁷ DODELSON	92	ASTR	
> 6.3 × 10 ¹⁵			16,18 CHUPP	89	ASTR	$m_{\nu} < 20 \text{ eV}$
> 1.7 × 10 ¹⁵			¹⁶ KOLB	89	ASTR	$m_{\nu} < 20 \text{ eV}$
> 3.3 × 10 ¹⁴			19,20 VONFEILIT	88	ASTR	
> 0.11	90	0	²¹ FRANK	81	CNTR	νν LAMPF
			22 HENRY	81	ASTR	
			23 KIMBLE	81	ASTR	$m_{\nu} = 10 - 100 \text{ eV}$
			24 REPHAELI	81	ASTR	
			25 DERUJULA	80	ASTR	
$> 2 \times 10^{21}$			²⁶ STECKER	80	ASTR	
$> 1.0 \times 10^{-2}$	90	0	21 BLIETSCHAU	78	HLBC	ν_{μ} , CERN GGM
> 1.7 × 10 ⁻²	90	0	21 BLIETSCHAU	78	HLBC	ν̄μ, CERN GGM
$> 2.2 \times 10^{-3}$	90	0	²¹ BARNES	77	DBC	ν, ANL 12-ft
$> 3. \times 10^{-3}$	90	0	²¹ BELLOTTI	76	HLBC	ν, CERN GGM
$> 1.3 \times 10^{-2}$	90	1	21 BELLOTTI	76	HLBC	v, CERN GGM
13 KRAKAUER	91 quotes the l	lim	it $\tau/m_{\nu_1} > (0.75a^2)$	+	21.65a	+ 26.3) s/eV, where
is a paramete	r describing the	e :	asymmetry in the neu	itrin	o decay	defined as dN / dcos

Created: 6/23/1999 10:21

= $(1/2)(1 + a\cos\theta)$ The parameter a=0 for a Majorana neutrino, but can vary from -1 to 1 for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for a = -1).

14 BILLER 98 use the observed TeV γ -ray spectra to set limits on the mean life of a radiatively decaying neutrino between 0.05 and 1 eV. Curve shows $au_{
u}/{\rm B}_{\gamma} > 0.15 \times 10^{21}~{\rm s}$ at 0.05 eV, $> 1.2 \times 10^{21}$ s at 0.17 eV, $> 3 \times 10^{21}$ s at 1 eV, where B $_{\gamma}$ is the branching ratio to photons.

15 BLUDMAN 92 sets additional limits by this method for higher mass ranges. Cosmological

limits are also obtained. 16 Nonobservation of γ 's in coincidence with ν 's from SN 1987A. Results should be divided by the $au_
u
ightarrow \gamma X$ branching ratio.

 17 DODELSON 92 range is for wrong-helicity keV mass Dirac u's from the core of neutron star in SN 1987A decaying to ν 's that would have interacted in KAM2 or IMB detectors.

18 CHUPP 89 should be multiplied by a branching ratio (about 1) and a detection efficiency (about 1/4), and pertains to radiative decay of any neutrino to a lighter or sterile neutrino.

19 Model-dependent theoretical analysis of SN 1987A neutrinos.

 20 Limit applies to $\nu_{ au}$ also.

21 These experiments look for $\nu_{\mu} \to \nu_{e} \gamma$ or $\overline{\nu}_{\mu} \to \overline{\nu}_{e} \gamma$.

 22 HENRY 81 uses UV flux from clusters of galaxies to find $au>1.1 imes10^{25}$ s for radiative

decay. 23 KIMBLE 81 uses extreme UV flux limits to find $\tau > 10^{22} - 10^{23}$ s. 24 REPHAELI 81 consider ν decay γ effect on neutral H in early universe; based on M31 HI concludes $\tau > 10^{24}$ s. 25 DERUJULA 80 finds $\tau > 3 \times 10^{23}$ s based on CDM neutrino decay contribution to UV

background.

 26 STECKER 80 limit based on UV background; result given is $au > 4 imes 10^{22}$ s at $m_{
u} = 20$ eV.

$|(v-c)/c| (v \equiv \nu_2 \text{ VELOCITY})$

Expected to be zero for massless neutrino, but also tests whether photons and neutrinos have the same limiting velocity in vacuum.

VALUE (units 1	0-4) CL%	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do	not use the	e following	data for averages	fits	, limits,	etc. •	
< 0.4	95	9800	KALBFLEISCH	79	SPEC		
<2.0	99	77	ALSPECTOR	76	SPEC	0	>5 GeV v
<4.0	99	26	ALSPECTOR	76	SPEC	0	<5 GeV ν

ν₂ MAGNETIC MOMENT

Must vanish for Majorana neutrino or purely chiral massless Dirac neutrino. The value of the magnetic moment for the standard SU(2)×U(1) electroweak theory extended to include massive neutrinos (see FUJIKAWA 80) is $\mu_{\nu}=3eG_Fm_{\nu}/(8\pi^2\sqrt{2})=(3.2\times10^{-19})m_{\nu}\mu_B$ where m_{ν} is in eV and $\mu_B=e\hbar/2m_e$ is the Bohr magneton. Given the upper bound m_{ν_2} < 0.17 MeV, it follows that for the extended standard electroweak theory, $\mu(\nu_2)<$ 0.51 \times 10⁻¹³ μ_B .

VAL	$UE(10^{-10} \mu_B)$	CL%	DOCUMENT ID		TECN	COMMENT
<	8.5	90	AHRENS	90	CNTR	$\nu_{\mu}e \rightarrow \nu_{\mu}e$
<	7.4	90	27 KRAKAUER	90	CNTR	LAMPF $(\nu_{\mu}, \overline{\nu}_{\mu})e$
						elact

HTTP://PDG.LBL.GOV

Page 3

Created: 6/23/1999 10:21

Good reference in LIBRARY here: Particle physics: One hundred years of discovery. Points to all the classic experiments.