Experiments needs of Grid technology and infrastructure

LHC experiments
Geneva, February 22, 2003

A reminder of the problem

Objectives of Phase I (02-05)

- Prepare the computing environment for the analysis of LHC data
 - Including applications, GRID MW and infrastructure
- Deploy and coordinate a global grid service
 - Acquire, deploy and operate robust and maintainable middleware
 - Requirements in HEPCAL
 WWW.corp.ch/log/sc2/rtag
 - www.cern.ch/lcg/sc2/rtag4/finalreport.doc
- ♦ 2H03 service ramp-up
 - batch service, data management, reliability, operability, scaling & performance
- 1H04 experiment data challenges
- 2H04 full LCG Pilot
 - Fulfill HEPCAL + prototype interactive analysis
- 1H05 Technical Design Report for Phase 2

Centres taking part in LCG-1

around the world -> around the clock

Current status

- GRID middleware exists and is not vapourware
- Experiments [have used | are using it] for realistic productions, however
 - Basic reliability & functionality problems exist
 - Some HEPCAL "simple" requirements are far from being satisfied
 - Several system level issues are not yet addressed
- We still have a long way to go to get to a solid service
 - LCG-1 plan looks now ambitious, and this is worrying
 - Some of the advanced functionality we need is addressed only now

Current status (cont.)

- Middleware projects are collaborating only partially
 - Substantial duplication is present (could be beneficial initially, but is becoming wasteful...)
 - Most of them are short-lived
- Experiments have developed "higher functionality" middleware
 - AliEn, Dirac, Ganga, Grappa, Magda, Boss, Impala
 - Some solutions are surprisingly (or may be not) similar
- We need robustness and simplicity
 - Remember? GRID is about "seamless and reliable access to high-end resources"
 - It is easy to expand scope, much harder to contract it!
 (D.Foster)
- How do we achieve this?

The GRID empire is developing... but it might strike back

Current status (cont.)

- A tremendous experience has been gained
 - See for instance the EDG testbed
 - From all the parties, i.e. middleware, users and sysadmins
 - Arguably some of the mistakes made were unavoidable An expert is a man who has made all the possible mistakes in a restricted field
- We have learnt a lot from experience
 - But we also understand that it is very hard!
- Time is now short, and we cannot afford more "faux pas"
 - Duplication <u>must</u> be avoided (e.g. EDG vs. LCG-1 testbed)
 - Too much emphasis on interoperability may constrain evolution
 - But also too ambitious programmes and functionality
 - The EDG EU reviewers "Congratulates the project management for taking the risk of concentrating on quality"

LCG-1 priorities

- Develop a stable infrastructure providing basic functionality
 - Reference to HEPCAL + operational needs
 - From batch production to batch and then interactive analysis
- Converge on a set of MW tools that could evolve into Phase-2
 - Or be easily replaced if necessary
- Limit / avoid duplication of efforts
- Continue understanding experiment needs
 - HEPCAL II may be necessary here
- Understand experiment need for "higher level" or "HEP specific" middleware
 - See why it was developed and try to coordinate it
 - Or "push" some of it into MW development
- Focus on well understood / documented functionality, stability and simplicity

EGEE Enabling Grids for E-science in Europe (how it has been presented to us)

- ◆ Goal
 - create a general European Grid production quality infrastructure on top of present and future EU RN infrastructure
- Build on
 - EU and EU member states major investment in Grid Technology
 - Several pioneering prototype results
 - Largest Grid development team in the world
- ◆ Goal can be achieved for about €100m/ 4 years on top of the national and regional initiatives
- Approach
 - Leverage current and planned national and regional Grid programmes (e.g. LCG)
 - Work closely with relevant industrial Grid developers, NRNs and US

EGEE

Geant network

Integrated Infrastructure Initiative (I3)

- Three lines of funding supported (with possible budget breakdown)
 - Networking activities (nothing to do with networks...):
 - This is the overhead: management, coordination, dissemination and outreach (7-10% of the total funding)
 - Specific service activities:
 - Provision and procurement of Grid services (60% of total funding)
 - Joint research activity
 - Engineering development to improve the services provided by the Grid infrastructure (20% of total funding)
 - Application support and focused R&D (10% of total funding)

EGEE proposal timeline

- Tentative Schedule (continued)
- EU call out on Dec 17th
- Draft 1: overall project structure end of February 2003
- Draft 2: with detailed workpackages end of March 2003
- Final proposal including admin and management end of April 2003
- Submission by May 6th 2003
- First feedback from EU in June-July
- Contract negotiation late summer, fall '03
- Contract signature by the end of '03
- Start of project Q1-Q2 '04

EGEE & LCG -- opportunities

- EGEE can be an unique opportunity to
 - Build a well operated testbed
 - Provide the necessary personnel to harden (simplify?) the existing MW
 - Provide quality MW using the existing middleware R&D
- The EGEE operated LCG testbed has the potential to provide a focal point for convergence
 - Of different user communities within LHC
 - Of different middleware projects working with LHC
- However such a large project has potential dangers
 - Which are proportionally big!

EGEE & LCG -- caveats

- Divergence
 - US MW projects and US experiment groups MUST "buy in"
 - Cooperate with EGEE / LCG and ensure complementarity
 - Application requirements have to be coordinated and controlled
 - All sciences involved have to get their requirements into the Program of Work
 - But this should not lead to too much divergence
 - All efforts should converge on the same testbed
 - We are seeing with EDG-LCG-1 that the operational interference of several testbeds is destructive on the LHC Regional Centre staff
 - EGEE and LCG-x testbed must coincide (software and hardware) in all sites that belong to both

EGEE & LCG -- caveats

Rewriting may not be the only option

- Review current middleware packages with respect to LCG requirements → need repackage, simplify, interoperate, eliminate duplicates ??
- An architecture would be extremely helpful (components, functionality, API's, protocols)
- However remember that scrapping software is not failure providing you retain the knowledge -- that would be a good start

Overhead & timing

- Planning has to be carefully done as we cannot afford the overhead of running two large projects, supporting two planning/reporting/review processes
- EGEE timing should be largely in line with LCG timing

Resources

- All this has significant costs, EGEE can probably cover it, but only if things are done right from the start
- If CERN becomes a e-science competence centre this should not be to the detriment of LHC!

EGEE & LCG -- caveats

- Requirements
 - Experiments must make sure that their requirements make it into the Programme of Work
 - But we should be realistic
 - Asking for the moon will not work, no matter how much manpower is there
 - LHC experiments must be involved in the definition of the workpackages and of their goals
 - But to stand a chance to be heard LHC experiments should speak with a single voice (GAG has been setup for this)

Experiment participation

- Even in the best of all worlds EGEE will draw on experiment resources
 - Installation of software, testing and evaluation of EGEE
 - Necessary participation into the project bodies
 - Collaboration with the different components of the project, in particular MW
- This is not an overhead imposed by EGEE
- It is <u>necessary</u> manpower that we need to build LCG-x
- But EGEE can and must compensate for this
 - Failure to secure this manpower would make the participation of experiments into EGEE impossible
 - And therefore would reduce / eliminate the interest of the whole project for LHC

Experiment participation

- We need a "WP8" inside EGEE
- A HEP application work package
 - Some Experiment Independent People (~4) and some additional personnel into the experiments (1-2 people per experiment)
 - Build on the knowledgeable, experienced team within EDG – "loose" cannons
 - Provide support to experiments on the EGEE testbed for installation, evaluation, problem reporting, liaison with the other workpackages
- The EDG experience shows that this is essential
 - Only with such a body the experiments will be able to make the most out of the testbed, properly evaluating it and providing qualified feedback

Relation with GAG

- GAG will continue its work in parallel to EGEE
 - Requirement definition and refinement at a more "abstract" level without getting directly involved with the testbed
 - Look for commonalities in experiment "high level middleware"
 - Official representation in EGEE for LHC requirements
 - Involved in all the phases of the preparation of the EGEE workplan
- It is important that experiments are represented
 - But they must have a common representation
- GAG has been formed to create a common viewpoint of the experiments on GRID

Conclusions

- To avoid dispersion and divergence experiments will have to interact in a highly coherent way with EGEE
 - GAG will act as the LCG forum for developing & monitoring the common requirements → strong i/p to EGEE (& ITR)
- Experiments need extra support to evaluate the testbed and provide qualified feedback
 - EDG has shown that a WP8-like structure is necessary and must be properly manned
 - EDG type "loose cannons" essential for a coherent implementation & evaluation
- EGEE has the potential to be a great success, as we have the expertise and the experience
 - EDG has shown its necessary to have an upfront architecture
 - Essential to have well-described, comprehensive set of use cases

