Violation of Particle Anti-particle Symmetry

CERN Summer Student Lectures 1, 2 and 5 August 2002

Tatsuya Nakada CERN and University of Lausanne

Contents of the Lecture

 \bigodot I

 \bigodot

 \odot

 \bigodot

 \prod

IV

- 1) Concept of symmetries
- 2) P, T and C transformation
- 3) Conservation of symmetries
- 4) CP violation in the charged kaon system
- 5) CP violation in the neutral kaon system
- 6) Kaon interferometer
- $III \{ 7\}$ Standard Model and CP violation (K, B)
	- 8) Baryogenesis and CP violation
	- 9) Next experimental steps

1) Concept of symmetries

Symmetry

- regular pattern
- symmetry

Nature

Observation

Recognition

Creating arts

- regular pattern
- symmetry

Concept

Realisation

Natural Science

$$
g_{\mu\nu}g^{\mu\nu}
$$

Extracting more abstract concept

Postulating and predicting phenomena

 $f = G \frac{m_1 m_2}{2}$

r 2

Observation

Observation Generalising and making physical laws

Other examples of symmetry

and patterns

Some asymmetry makes... more dynamic

more beautiful

if not too much...?

2) P, T and C transformation

In particle physics reversing internal quantum numbers charged states

 e^- (electron) $\qquad \Leftrightarrow \qquad e^+$ (positron) $p \text{ (proton)} \qquad \Leftrightarrow \qquad \bar{p} \text{ (anti proton)}$ π^+ (positive pion) \Leftrightarrow π^- (negative pion) $u (u quark) \Leftrightarrow \overline{u} (anti u quark)$ neutral states n (neutron) \Leftrightarrow \overline{n} (anti neutron) K^0 (k-zero meson) \Leftrightarrow K^0 (anti k-zero meson) π^0 (neutral pion) \Leftrightarrow π^0 (neutral pion) $\mathcal{L}^{\text{max}}_{\text{max}}$

Discrete and continuous transformations

Translation Rotation Reflection (parity) RRRR RRRR
RRR R R Report Formation **R** K **^s discrete contin uou ^s contin uou**

3) Conservation of sym metries If no difference seen between "this world" and "space reflected world" \Rightarrow We say: •parity is conserved, •P symmetry is conserved, •world is invariant under P transformation •etc.

More "professional" description,

- Hamiltonian operator describing the world \hat{H}
- Parity transformation operator \hat{P}

If $\hat{H}^{\text{P}} \neq \hat{H}$ $\hat{P}^{\dagger} \hat{H} \hat{P} = \hat{H}^{\text{P}}$ parity transformation of Hamiltonian

Parity violation, Parity non-conservation etc. etc.

example

Violation of Parity

Even more with DNA

Parity is fully violated.

A similar terminology applies to C and T.

Strong and electromagnetic interactions conserve: flavour quantum numbers, C, P, T, CP, CT, PT and CPT

Particle physics example: $\pi^0\!\rightarrow$ γγ but not γγγ

$$
\pi^0 = (\mathbf{u}\bar{\mathbf{u}} + \mathbf{d}\bar{\mathbf{d}})_{L=0, S=0} \longrightarrow \mathbf{C}(\pi^0) = +1
$$

$$
\vec{B}, \vec{E} \stackrel{\mathbf{C}}{\rightarrow} -\vec{B}, -\vec{E} \longrightarrow \mathbf{C}(\gamma) = -1
$$

initial state $C(\pi^0) = +1$, final state $C(\gamma\gamma) = +1$, $C(\gamma\gamma\gamma) = -1$ conservation of C in π^0 decays Or... calculating decay amplitudes $A_{\gamma\gamma\gamma}$ = <γγγl $C^{-1}C$ H $C^{-1}C$ lπ⁰> = −<γγγl C H C^{-1} lπ⁰> $=$ –<γγγl H l π^0 > = – $A_{\gamma\gamma\gamma}$ $A_{\gamma\gamma\gamma}=0$

Weak interactions do not conserve: flavour quantum numbers, C, P, T, CP, CT and PT

The topic of this lecture series.

Partial decay width for $K^+\rightarrow \pi^+\pi^+\pi^ \Gamma_{K^+\to \pi^+\pi^+\pi^-} = \int d^3p_1 \int d^3p_2 \int d^3p_3 \Gamma_{\pi_1^+,\pi_2^+,\pi_3^-}(\vec{p}_1,\vec{p}_2,\vec{p}_3)$

C transformed partial decay width

$$
\Gamma_{K^{+}\to\pi^{+}\pi^{+}\pi^{-}}^{C} = \int d^{3}p_{1} \int d^{3}p_{2} \int d^{3}p_{3} \Gamma_{\pi_{1}^{-},\pi_{2}^{-},\pi_{3}^{+}}(\vec{p}_{1},\vec{p}_{2},\vec{p}_{3})
$$

$$
\equiv \Gamma_{K^{-}\to\pi^{-}\pi^{-}\pi^{+}}
$$

CP transformed partial decay width

$$
\Gamma_{K^{+}\to\pi^{+}\pi^{+}\pi^{-}}^{\text{CP}} = -\int d^{3}p_{1} \int d^{3}p_{2} \int d^{3}p_{3} \Gamma_{\pi_{1}^{-},\pi_{2}^{-},\pi_{3}^{+}}(-\vec{p}_{1},-\vec{p}_{2},-\vec{p}_{3})
$$

$$
= \int d^{3}p_{1} \int d^{3}p_{2} \int d^{3}p_{3} \Gamma_{\pi_{1}^{-},\pi_{2}^{-},\pi_{3}^{+}}(\vec{p}_{1},\vec{p}_{2},\vec{p}_{3})
$$

$$
= \Gamma_{K^{-}\to\pi^{-}\pi^{-}\pi^{+}}
$$

Partial decay width: $\Gamma_{K^+\to\pi^+\pi^+\pi^-}$ and $\Gamma_{K^-\to\pi^-\pi^-\pi^+}$ are CP and C transformed to each other If $\Gamma_{K^+\to\pi^+\pi^+\pi^-}\neq \Gamma_{K^-\to\pi^-\pi^-\pi^+}\to \mathbb{C}P$ and $\mathbb{C}!$

> **NB: these differences can appear in** Γ or d Γ/dt

In general, $\mathbb Z$ and $\mathbb Z$ are needed in order to generate partial decay widths differences between particles and anti particles.

Total widths between K⁺ **and K**- **must be identical CPT**

 (K^{\pm}) have definite masses and decay widths) Sloops are given by the total decay widths: CPT theorem guarantees that they are identical.