Violation of Particle Anti-particle Symmetry

CERN Summer Student Lectures 1, 2 and 5 August 2002

Tatsuya Nakada CERN and University of Lausanne

Contents of the Lecture

- I { 1) Concept of symmetries
 P, T and C transformation
 Conservation of symmetries
 - 4) CP violation in the charged kaon system
 - II $\begin{cases} 5 & \text{CP violation in the neutral kaon system} \\ 6 & \text{Kaon interferometer} \end{cases}$
 - (\mathbf{R}, \mathbf{B}) III $\{$ 7) Standard Model and CP violation (K, B)
- IV { 8) Baryogenesis and CP violation
 9) Next experimental steps

1) Concept of symmetries

Symmetry

- regular pattern
- symmetry

•••

Nature

Observation

Recognition

Creating arts

- regular pattern
- symmetry

- ...

Concept

Realisation

Natural Science

Observation

$$g_{\mu
u}g^{\mu
u}$$

Extracting more abstract concept

Postulating and predicting phenomena

 $f = G \frac{m_1 m_2}{r^2}$

Generalising and

making physical laws

Observation

Other examples of symmetry

and patterns

Some asymmetry makes... more dynamic

more beautiful

if not too much...?

2) P, T and C transformation

<u>In particle physics</u> reversing internal quantum numbers charged states

e⁻ (electron) \Leftrightarrow e⁺ (positron) \Leftrightarrow \overline{p} (anti proton) p (proton) \Leftrightarrow π^- (negative pion) π^+ (positive pion) u (u quark) \overline{u} (anti u quark) \Leftrightarrow neutral states n (neutron) \overline{n} (anti neutron) \Leftrightarrow K^0 (k-zero meson) \Leftrightarrow K⁰ (anti k-zero meson) π^0 (neutral pion) \Leftrightarrow π^0 (neutral pion)

Discrete and continuous transformations

Translation Reflection Rotation (parity) R К continuous discrete continuous

More "professional" description,

- \hat{H} Hamiltonian operator describing the world
- \hat{P} Parity transformation operator

 $\hat{P}^{\dagger}\hat{H}\hat{P} = \hat{H}^{P}$ parity transformation of Hamiltonian

If $\hat{H}^{\mathrm{P}} \neq \hat{H}$

Parity violation, Parity non-conservation etc. etc.

C and CP

example

Violation of Parity

Even more with DNA

Parity is fully violated.

to formula

A similar terminology applies to C and T.

Strong and electromagnetic interactions conserve: flavour quantum numbers, C, P, T, CP, CT, PT and CPT

Particle physics example: $\pi^0 \rightarrow \gamma \gamma$ but not $\gamma \gamma \gamma$ $\pi^0 = (u\bar{u} + d\bar{d})_{L=0, S=0} \longrightarrow C(\pi^0) = +1$ $\vec{B}, \vec{E} \xrightarrow{C} - \vec{B}, -\vec{E} \longrightarrow C(\gamma) = -1$ initial state $C(\pi^0) = +1$, final state $C(\gamma \gamma) = +1$, $C(\gamma \gamma \gamma) = -1$

conservation of C in π^0 decays

Or... calculating decay amplitudes $A_{\gamma\gamma\gamma} = \langle \gamma\gamma\gamma|C^{-1}C H C^{-1}C|\pi^{0}\rangle = -\langle \gamma\gamma\gamma|C H C^{-1}|\pi^{0}\rangle$ $= -\langle \gamma\gamma\gamma|H|\pi^{0}\rangle = -A_{\gamma\gamma\gamma}$ $A_{\gamma\gamma\gamma} = 0$

Weak interactions do not conserve: flavour quantum numbers, C, P, T, CP, CT and PT

The topic of this lecture series.

Partial decay width for $K^+ \to \pi^+ \pi^+ \pi^ \Gamma_{K^+ \to \pi^+ \pi^+ \pi^-} = \int d^3 p_1 \int d^3 p_2 \int d^3 p_3 \Gamma_{\pi_1^+, \pi_2^+, \pi_3^-}(\vec{p}_1, \vec{p}_2, \vec{p}_3)$

C transformed partial decay width

$$\begin{split} \Gamma^{\rm C}_{{\rm K}^+ \to \pi^+ \pi^-} &= \int d^3 p_1 \int d^3 p_2 \int d^3 p_3 \Gamma_{\pi_1^-, \pi_2^-, \pi_3^+} \left(\vec{p}_1, \vec{p}_2, \vec{p}_3 \right) \\ &\equiv \Gamma_{{\rm K}^- \to \pi^- \pi^- \pi^+} \end{split}$$

CP transformed partial decay width

$$\begin{split} \Gamma_{\mathrm{K}^{+} \to \pi^{+} \pi^{-}}^{\mathrm{CP}} &= -\int d^{3} p_{1} \int d^{3} p_{2} \int d^{3} p_{3} \Gamma_{\pi_{1}^{-}, \pi_{2}^{-}, \pi_{3}^{+}} \left(-\vec{p}_{1}, -\vec{p}_{2}, -\vec{p}_{3} \right) \\ &= \int d^{3} p_{1} \int d^{3} p_{2} \int d^{3} p_{3} \Gamma_{\pi_{1}^{-}, \pi_{2}^{-}, \pi_{3}^{+}} \left(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3} \right) \\ &= \Gamma_{\mathrm{K}^{-} \to \pi^{-} \pi^{-} \pi^{+}} \end{split}$$

Partial decay width: $\Gamma_{K^+ \to \pi^+ \pi^+ \pi^-}$ and $\Gamma_{K^- \to \pi^- \pi^- \pi^+}$ are CP and C transformed to each other If $\Gamma_{K^+ \to \pi^+ \pi^+ \pi^-} \neq \Gamma_{K^- \to \pi^- \pi^- \pi^+} \rightarrow \mathcal{C}P$ and $\mathcal{C}!$

NB: these differences can appear in Γ or $d\Gamma/dt$

In general, and are needed in order to generate partial decay widths differences between particles and anti particles.

Total widths between K⁺ and K⁻ must be identical CPT

(K[±] have definite masses and decay widths)Sloops are given by the total decay widths:CPT theorem guarantees that they are identical.