5) CP violation in the neutral kaon system

How do we produce K^0 and \overline{K}^0 ?

Strong and electromagnetic interactions conserve strangeness:

$$K^{+}n (s = +1) \rightarrow pK^{0} (s = +1), K^{-}p (s = -1) \rightarrow n\overline{K}^{0} (s = -1)$$
$$p\overline{p} (s = 0) \rightarrow K^{-}K^{0}\pi^{+}, K^{+}\overline{K}^{0}\pi^{-} (s = 0)$$
$$\phi (s = 0) \rightarrow K^{0}\overline{K}^{0} (s = 0)$$

(Neutral kaons are generally produced as "flavour eigenstate".)

The CPLEAR Detector

By measuring the decay length and momentum, determine the decay time.

 K^{-}

 K^0 flight time = $f(l, \vec{p})$

Weak interactions do not conserve strangeness: $K^0 \Leftrightarrow \overline{K}^0$ through weak interactions.

-see demonstration with the coupled pendulum-

elastic (dispersive) and non-elastic (absorptive) coupling. spring paddle

 K^0 and \overline{K}^0 are not the eigen-modes.

- K^0 and \overline{K}^0 have neither definite mass nor decay width,

i.e. they oscillate to each other.

Two eigen-modes are the linear combinations of K^0 and \overline{K}^0 .

 $-K_L$ and K_S with definite masses and decay widths.

 $m_{\rm L} > m_{\rm S}, \Gamma_{\rm S} >> \Gamma_{\rm L}$

- K_S lifetime = $1/\Gamma_{\rm S} = 8.94 \times 10^{-11} \text{s}(2.7 \text{ cm}@p = 450 \text{ MeV}/c)$
- K_{L} lifetime = $1/\Gamma_{L} = 5.17 \times 10^{-8}$ s (16 m@p = 450 MeV/c)

K_L beam is "easy" to make: wait long enough!

•K⁰ and \overline{K}^0 : CP (and C) transformed states to each other → What are the CP (and C) transformed states of K_S and K_L?

If CP and C are conserved in weak interactions: K_S and K_L are self-conjugate (like π^0) $K_S \propto K^0 + \overline{K}^0$, $K_L \propto K^0 - \overline{K}^0$ with CP quantum numbers +1 and -1 respectively $CP(K_S) = + K_S$, $CP(K_L) = - K_L$

$$K_{S}(CP = +1) \rightarrow \pi^{+}\pi^{-}(CP = +1)$$

but $K_{L}(CP = -1) \nleftrightarrow \pi^{+}\pi^{-}(CP = +1)$

 $K_L \rightarrow \pi^+\pi$ decays were observed in 1964 -discovery of CP violation-

$$K_L(CP = -1) \rightarrow \pi^+\pi^-\pi^0, \pi^0\pi^0\pi^0(CP = -1)$$

What you see in CPLEAR is

CP violation parameters often refereed:

$$\eta_{+-} = \frac{K_L \rightarrow \pi^+ \pi^- \text{ decay amplitude } <1\% \text{ error}}{K_S \rightarrow \pi^+ \pi^- \text{ decay amplitude}} <1\% \text{ error}$$
$$= (2.284 \pm 0.018) \times 10^{-3} \times e^{i(43.3 \pm 0.5)}$$
$$\eta_{00} = \frac{K_L \rightarrow \pi^0 \pi^0 \text{ decay amplitude}}{K_S \rightarrow \pi^0 \pi^0 \text{ decay amplitude}} \qquad \text{direct measurements}$$

=
$$(2.23 \pm 0.11) \times 10^{-3} \times e^{i(43.2 \pm 1.0)}$$

 $\eta_{+-} \approx \eta_{00}$ (but not quite...)

Two most recent experiments: NA48@CERN, KTeV@FNAL

$$|\eta_{+-}|^{2} = \frac{N(K_{L} \to \pi^{+}\pi^{-})}{N_{L}^{+-}} / \frac{N(K_{S} \to \pi^{+}\pi^{-})}{N_{S}^{+-}}$$

$$\frac{|\eta_{00}|^2}{|\eta_{+-}|^2} = \frac{N_{\rm S}^{00} N_{\rm L}^{+-}}{N_{\rm L}^{00} N_{\rm S}^{+-}} \frac{N({\rm K}_{\rm L} \to \pi^0 \pi^0) N({\rm K}_{\rm S} \to \pi^+ \pi^-)}{N({\rm K}_{\rm S} \to \pi^0 \pi^0) N({\rm K}_{\rm L} \to \pi^+ \pi^-)}$$

 $N_{S(L)}^{+-(00)}$: number of $K_{S(L)}$ used to measure $K_{S(L)} \rightarrow \pi^{+}\pi^{-}(\pi^{0}\pi^{0})$ decays $N(K_{S(L)} \rightarrow \pi^{+}\pi^{-}(\pi^{+}\pi^{-}))$: number of observed $K_{S(L)} \rightarrow \pi^{+}\pi^{-}(\pi^{0}\pi^{0})$ decays

Why is $|\eta_{+-}/\eta_{00}| \neq 1$ so important?

 K_L can decay into $\pi^+\pi^-$ if

- 1) K_L is not a state with CP = -1
- or/and
 - 2) CP is not conserved in $K_L \rightarrow \pi^+\pi^-$ decays. (CP in decay amplitude)
- If 1) \rightarrow CP violation ($\pi^+\pi^-$) must be = CP violation ($\pi^0\pi^0$) $|\eta_{+-}/\eta_{00}| = 1$ \rightarrow No CP violation in the charged kaon system,
- If 2) \rightarrow CP violation ($\pi^+\pi^-$) could be \neq CP violation ($\pi^0\pi^0$) may be $|\eta_{+-}/\eta_{00}| \neq 1$.

The Standard Model prediction is 1) + 2) [but 1)>>2)] and the observation is consistent with this prediction. 6) Kaon interferometer

 e^+e^- (@1GeV) \rightarrow virtual $\gamma \rightarrow \phi(1020) \rightarrow \overline{K} K$ all due to electromagnetic interactions

 $\phi(1020) \rightarrow \overline{K} K$

$\overline{K}\overline{K}$ final state must be a quantum superposition

For neutral kaons, they oscillates, but....

Only the allowed oscillations are

KLOE experiment at DAFNE storage ring (@Frascati)

$K_S \rightarrow \pi^+\pi^-, K_L \rightarrow \pi^+\pi^-$ CP violating decays!! Run Event Date 6757 738533 Apr. 20, 99

An ideal way to produce K_S beam 1) Identify K_L decay with the decay time. 2) opposite side is K_S.