The LHCb Upgrade

- Introduction/Overview
- LHCb & Upgrade physics programme
- Trigger/DAQ Upgrade
- Detector Upgrade
- R&D Plan

Franz Muheim University of Edinburgh On behalf of the LHCb collaboration

• Conclusions

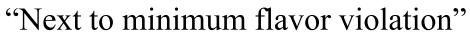
LHCC meeting CERN 22/23 Sept 2008

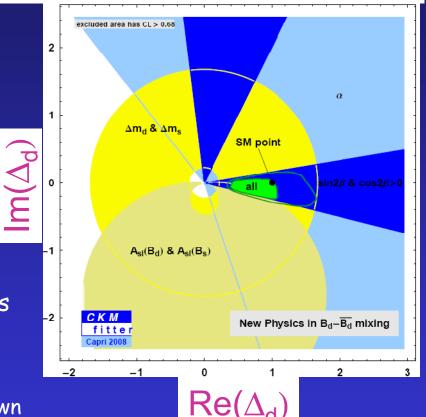
Introduction/Overview

- Expression of Interest for an LHCb Upgrade
 - Submitted to LHCC on 22nd April 2008 document CERN/LHCC/2008-007
- Why is upgrade required?
 - Physics rationale
- How can experiment be improved?
 - Identify issues of running at higher luminosity
 - 40 MHz is the only way forward
- Strategy for upgrade plan
 - How to implement 40 MHz readout
 - Consistency with LHC Schedule

Status of LHC Physics in ~2013

• LHCb


- will be producing lots of excellent physics results
- may or may not observe New Physics beyond Standard Model
- Flavour physics will constrain New Physics models
- ATLAS/CMS
 - will discover Standard Model Higgs (if it exists)
 - may or may not observe New Physics beyond Standard Model
- Branch point
 - Discovery or not of NP at TeV scale
- New Physics beyond the Standard Model
 - will contribute to flavour observables
 - Better flavour physics sensitivity will be required
 - to measure/probe New Physics flavour structure

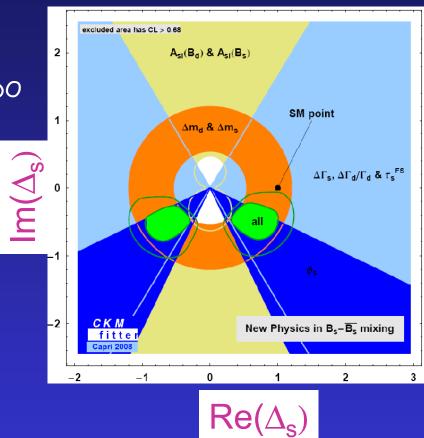

Limits on New Physics from B⁰

- Is there NP in B°-B° mixing?
 - Assume NP in tree decays is negligible

$$\operatorname{Re}(\Delta_{q}) + i\operatorname{Im}(\Delta_{q}) = \frac{\left\langle \mathbf{B}^{\circ}|\mathbf{H}^{\operatorname{full}}|\overline{\mathbf{B}}^{\circ}\right\rangle}{\left\langle \mathbf{B}^{\circ}|\mathbf{H}^{\operatorname{SM}}|\overline{\mathbf{B}}^{\circ}\right\rangle}$$

- Existing Measurements
 - Vub, Vcb, angles α , β , γ , Δm_d ...
- All quantities expressed as functions of CKM parameters η & ρ
- Fit to η , ρ , Re(Δ_d), Im(Δ_d)
 - Caveat: only 68% CL regions are shown due to large errors

From Jérôme Charles, Capri, June 2008


Large Range of NP still allowed

LHCC meeting CERN, 22/23 Sept 2008 F. Muheim

Limits on New Physics from B_S

Similar study for B_s decays

- including ΔM_s and ϕ_s measurements from CDF and DO
- Limits much weaker
 - phase in B_s mixing φ_s is
 not well measured yet
 - Caveat: only 68% CL regions are shown due to large errors
- Latest results on ϕ_s
 - Large central values
 - SM prediction close to zero
 - SM CL is at 7%

New Physics could be around the corner!

LHCC meeting CERN, 22/23 Sept 2008

LHCb Physics Prospects

LHCb – first five years

- Accumulate 10 fb⁻¹ data sample

Sensitivities

- Weak mixing phase ϕ_s in $B_s \rightarrow J/\psi \phi$ If $\phi_s \gg 0 \rightarrow NP$ discovery
- NP search in rare decays
 B_s→µ+µ- down to SM level
- $B_s \rightarrow \phi \phi$ probe NP in hadronic penguins
- Precision measurements of CKM angles sin2 β , γ and α
- Significant improvement for angle γ

• 10 fb⁻¹ data sample

- Probe/measure NP at 10% level

Sensitivities for integrated lumi of 2 fb⁻¹

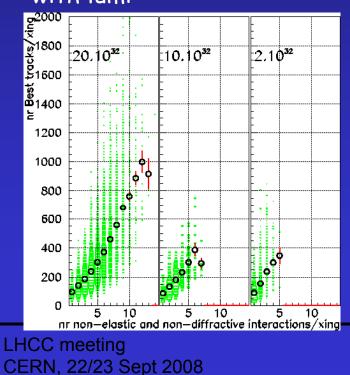
		Decay	Precision				
	γ	$B_s^0 \to D_s^{\mp} K^{\pm}$	$\sigma(\gamma) \sim 10^\circ$				
		$B^0 \rightarrow \pi^+ \pi^-$	$\sigma(\gamma)\sim 5^\circ$				
		$B_s^0 \rightarrow K^+ K^-$					
		$B^0 \to D^0 (K^- \pi^+, K^+ \pi^-) K^{*0}$	$\sigma(\gamma)\sim 6^\circ - 10^\circ$				
		$B^0 \to D^0(K^+K^-,\pi^+\pi^-)K^{*0}$					
		$B^- \rightarrow D^0(K^-\pi^+,K^+\pi^-)K^-$	$\sigma(\gamma)\sim 6^\circ-10^\circ$				
		$B^- \rightarrow D^0 (K^+ K^-/\pi^+\pi^-) K^-$					
		$B^- \rightarrow D^0 (K^0_S \pi^+ \pi^-) K^-$	$\sigma(\gamma) \sim 15^{\circ}$				
	α	$B^0 \rightarrow \pi^+ \pi^- \pi^0$	$\sigma(\alpha)\sim 8.5^\circ$				
3		$B^{+,0} \rightarrow \rho^+ \rho^0, \rho^+ \rho^-, \rho^0 \rho^0$					
	β	$B^0 \rightarrow J/\psi K_S^0$	$\sigma(\sin 2\beta) \sim 0.015$				
	Δm_s	$B_s^0 \to D_s^- \pi^+$	$\sigma(\Delta m_s) \sim 0.007 \text{ ps}^{-1}$				
	ϕ_s	$B^0_s o J/\psi \phi$	$\sigma(\phi_s)\sim 0.023~{ m rad}$				
		$B_s^0 \to \phi \phi$	$\sigma(\phi_{s})\sim 0.11$ rad				
	Rare	$B_s^0 \to \mu^+ \mu^-$					
	Decays	$B^0 \rightarrow K^{*0} \mu^+ \mu^-$	$\sigma(s_0))\sim 0.46~{\rm GeV^2}$				
		$B^0 \to K^{*0} \gamma$	$\sigma(A_{CP}) \sim 0.01$				
		$B_s^0 \to \phi \gamma$					

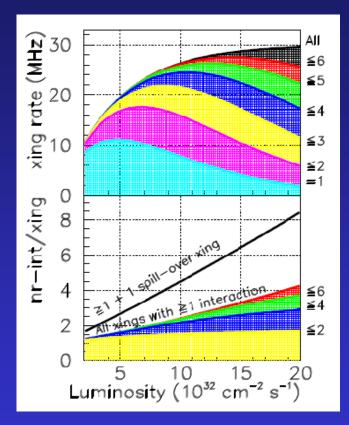
LHCb Upgrade

• What is LHCb Upgrade?

- Run at ten times the design luminosity, namely at 2x10³³
- Needs detector and trigger upgrade
- Increase trigger efficiencies for hadrons by at least a factor two
- Accumulate data sample of 100 fb⁻¹
- **Sensitivities**
 - LHCb upgrade will provide us with a very powerful microscope
 - Use theoretically clean observables
 - Probe/measure NP at percent level

Sensitivities for integrated lumi of 100 fb⁻¹

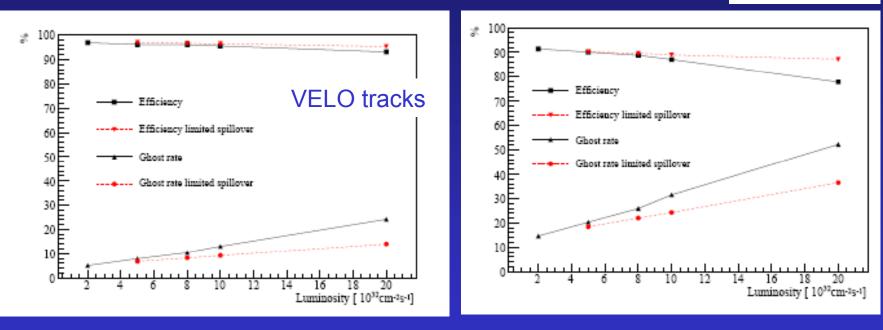

Observable	Sensitivity
$S(B_s \rightarrow \phi \phi)$	0.01 - 0.02
$S(B_d \rightarrow \phi K_S^0)$	0.025 - 0.035
$\phi_s (J/\psi\phi)$	0.003
$\sin(2\beta) (J/\psi K_S^0)$	0.003 - 0.010
$\gamma (B \rightarrow D^{(*)}K^{(*)})$	$< 1^{\circ}$
$\gamma (B_s \rightarrow D_s K)$	$1-2^{\circ}$
$\mathcal{B}(B_s \rightarrow \mu^+ \mu^-)$	5 - 10%
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	3σ
$A_T^{(2)}(B \to K^{*0}\mu^+\mu^-)$	0.05 - 0.06
$A_{FB}(B \rightarrow K^{*0}\mu^+\mu^-) s_0$	$0.07 \mathrm{GeV^2}$
$S(B_s \to \phi \gamma)$	0.016 - 0.025
$A^{\Delta\Gamma_s}(B_s \to \phi\gamma)$	0.030 - 0.050
charm $x^{\prime 2}$	2×10^{-5}
mixing y'	$2.8 imes10^{-4}$
$CP y_{CP}$	$1.5 imes10^{-4}$


Also studying Lepton Flavour Violation in $\tau{\rightarrow}\mu\mu\mu$

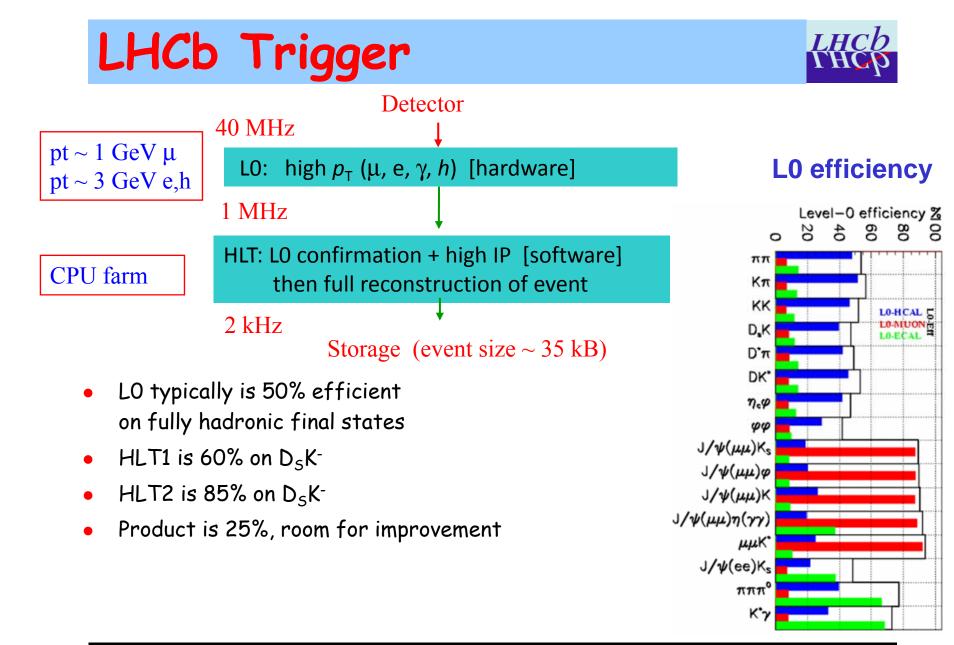
Interactions vs Luminosity

- At 2×10³² ~10 MHz crossings with ≥ 1 interactions
- At 10³³ ~26 MHz
 crossings with ≥ 1 interactions
- At >10³³
 linear increase
 with lumi

F. Muheim


Detector Performance vs Luminosity

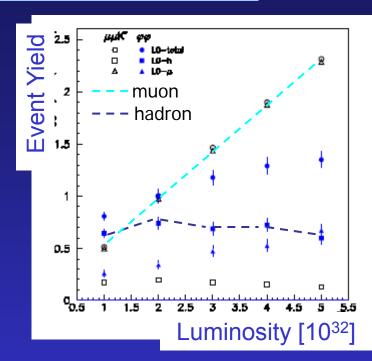
Tracking


	Efficiencies	and	Ghost	rate
--	--------------	-----	-------	------

Long Tracks

- Preliminary studies show that LHCb detectors can operate up to 1x10³³
- Detectors designed for 20 fb⁻¹ (except VELO: 6 to 8 fb⁻¹)

LHCC meeting CERN, 22/23 Sept 2008



LO Trigger vs Luminosity

- LO hadron trigger
 - Is bandwidth limited
 - Rate of HCAL triggers with $E_T > 2 \text{ GeV}$ increases from 4 to 25 MHz when lumi from 2 to 20x 10^{32}

- LO muon trigger
 - ~90% efficiency, scales with luminosity
- LO hadron trigger
 - Only ~50% efficient
 - does not scale with luminosity

F. Muheim

LHCb Upgrade Strategy

Current LHCb experiment

- LO trigger bandwidth cannot exceed 1.1 MHz
- At 2x 10³³ rate of interesting hadron seeds is ~25 MHz

Strategy

 Significant gains possible for LHCb upgrade when reading out data from detector at 40 MHz

■ Example Illustration - B_s→φφ

- At luminosity of 2x 10³³
- Trigger efficiency = 85% at 2x10³³
 for HCAL cluster > 2 GeV
 24 MHz of rate & 4.2 clusters/event

LHCb Upgrade Strategy

LHC Machine Upgrade

(LHCC upgrade session 1th July 2008)

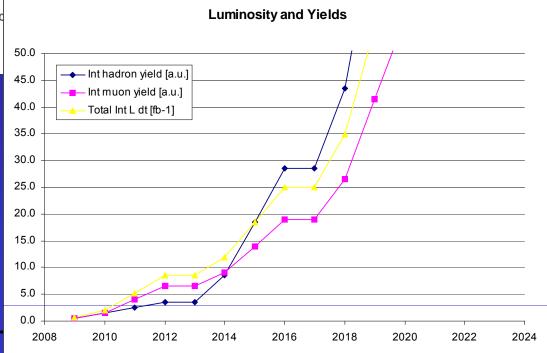
- Tentative LHC schedule
- Phase 1 IR Upgrade, new triplets, 8 months shutdown in 2012/13
- Phase 2 ATLAS & CMS replace inner detectors
 18 months shutdown in 2017
- Propose two-step approach consistent with LHC schedule (LHCb upgrade does not require SLHC)

• LHCb Upgrade Phase 1

- Upgrade all front-end detector electronics to 40 MHz by 2014 do not run in 2013 (Nov 2012 - Mar 2014 with 12 months access)
- Run at 1x10³³ until Phase 2 shutdown
- Increase hadron data sample by factor ~10
- reach detector design lumi of ~20 fb⁻¹ (except VELO)

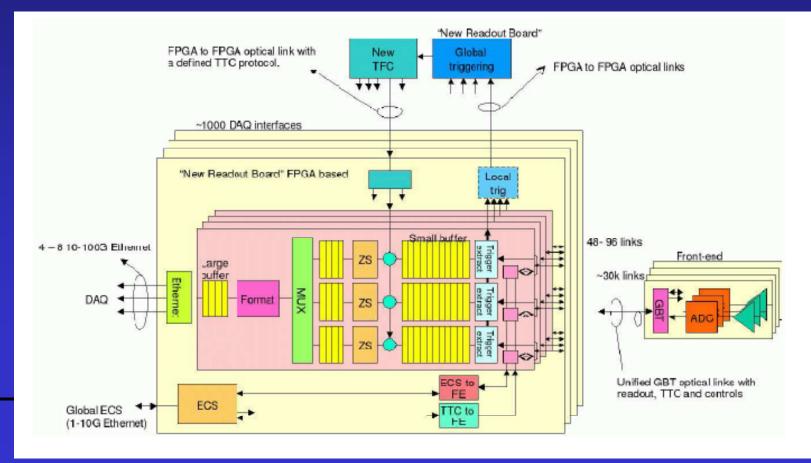
• LHCb Upgrade Phase 2

- Upgrade all detectors such that LHCb can operate at a luminosity of at least 2x10³³ during 18 months shutdown in 2017
- Operate at highest possible luminosity for five years


Luminosities and Yields

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Running time [10^6 s]	3.3	6.6	6.6	6.6		3.3	6.6	6.6		3.3	6.6	6.6	6.6	6.6
<l> [10^32]</l>	2.0	2.0	5.0	5.0		10.0	10.0	10.0		30.0	30.0	30.0	30.0	30.0
Int L dt [fb-1]	0.7	13	33	33		33	6.6	6.6		g g	19.8	19.8	19.8	19.8
Total Int L dt [fb-1]	0.7	2.0	5.3	8.6	8.6	11.9	18.5	25.1	25.1	35.0	54.8	74.6	94.4	114.2
hadron vield [a.u.]	0.5	1.0	1.0	1.0		5.0	10.0	10.0		15.0	30.0	30.0	30.0	30.0
Int hadron yield [a.u.]	0.5	1.5	2.5	3.5	3.5	8.5	18.5	28.5	28.5	43.5	73.5	103.5	133.5	163.5
hadron years for 2x stats	1.0	1.5	2.5	3.5		1.7	1.9	2.9		2.9	2.5	3.5	4.5	5.5
muon vield [a.u.]	0.5	10	25	25		25	5.0	5.0		75	15.0	15.0	15.0	15.0
Int muon yield [a.u.]	0.5	1.5	4.0	6.5	6.5	9.0	14.0	19.0	19.0	26.5	41.5	56.5	71.5	86.5
muon years for 2x stats	1.0	1.5	1.6	2.6		3.6	2.8	3.8		3.5	2.8	3.8	4.8	5.8

Notes:


One year = 6.6×10^{6} s corresponding to 152 days at 50% efficiend Peak Lumi after FE replacement: 10^33 Peak Lumi after 2017: 3x10^33 hadron and muon yields are normalised to a full year at 2x10^32

DAQ/Readout Architecture

- At 40MHz from on-detector front-ends to the DAQ
 - High but constant rate readout from front-ends to DAQ interface
 - Complexity in the counting room
 - Requires 30000 optical links at 40 MHz and 2.56 Gbit/s

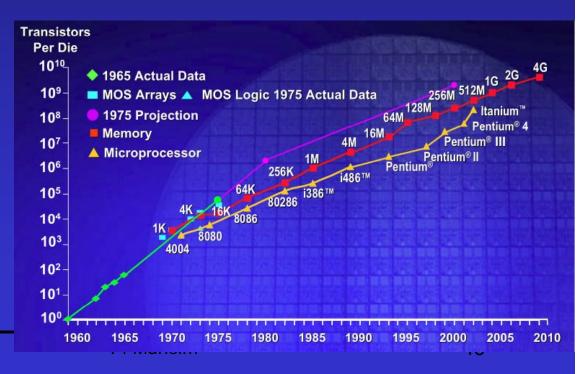
Data Rate

- Challenge
 - Need to demonstrate that we can collect signal at >10 times current rate
- We have decided on 40 MHz readout
 - We can do this using 10 GB/s technology
 - At 2x 10³³ Interaction rate is ~100 MHz, so up to 100 x the data flow
 - What we have now are 1 GB/s links
 - At the source upgrade to "New Readout Board" send data on one or several 10 GB/s links
 - On the way: Switches/routers receive data at up to 10 GB/s speed
 - At the destination: Servers receive data at up to 10 GB/s speed
 - 10-40 GB/s technology already exists in some form, certainly by 2013: (Eithernet, Myrinet, Infiniband)

Data Rate II

Data Storage

- We cannot permanently store data at the crossing rate, but in 2013 10 kHz is feasible & in 2017 20 kHz, compared to 2 kHz now
- We store data temporarily in cheap "circular" buffer outside of radiation area
- Can we process this amount of data? (offline)
 - LHCb computing TDR: Event processing time 8 sec (B event) on 1 GHz Pentium III
 - Now available 3 GHz quad-core (~12 GHz equivalent) already not a problem


Data Storage

- Can we store the events?
 - Full DST 125 kB/B event
 - 10 kHz corresponds to 12 PB per 10⁷ s
 - 247 PB systems now commercially available

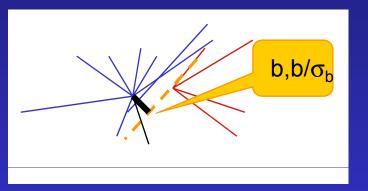
http://h18006.www1.hp.com/storage/xparrays.html

 Therefore 10 kHz or 20 kHz data output is feasible

Trigger Specifications

Projected online farm

- Is 16,000 processors/cores
- Original spec was 1 GHz and 1600 processors
- We have 25 ns *16,000 = 0.4 ms to make a decision (probably will have >10 GHz cores)


Trigger strategy

- Must execute in $\langle 0.4 \text{ ms} \rangle$
- Should be maximally efficient on signal and reduce the background to an acceptable level
- Minimum bias must be reduced from 100 MHz to <10 kHz, reduction factor is 100,000 to get 1 kHz background rate;
 ~same as now ⇒ goal can be met adopting current trigger strategy, but we want to do better!
- Not so useful rate of 100 kHz B's >90% must also be eliminated
- Goal
 - To increase hadron trigger efficiency by a factor of 2 to 3

Trigger Strategies at 40 MHz

- First level detached vertex trigger
 - Key point is to trigger on tracks which do not originate from a primary vertex
 - e.g. use impact parameter and its significance

- p_T information on tracks is crucial to defeat multiple scattering Need to reject tracks with P_t <250 MeV
 - Match VELO tracks to downstream tracker
 - or can put VELO in magnetic field

Trigger Strategies at 40 MHz

- Dimuon trigger
 - For muon channels
 - also used to add efficiency for hadron trigger & cross checks

• Calorimeter triggers

- Use existing triggers selecting high E_T events
- Can be tuned as a function of higher lumi and lower thresholds
- Can be implemented as a "rate control trigger"

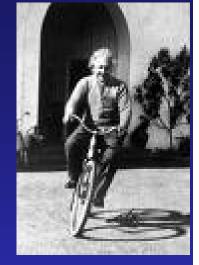
• Next level

- vertex trigger achieves factor of ~100 rejection, so we have about 10x more time per event
- Here we fully reconstruct tracks & fit for common vertex; goal is to get another factor of 10-100

Final level

 Now we have enough time to reconstruct the B candidate & keep if useful. This gains us the remaining factor of 10-100, so full minimum bias rejection is 10⁵.

Electronics

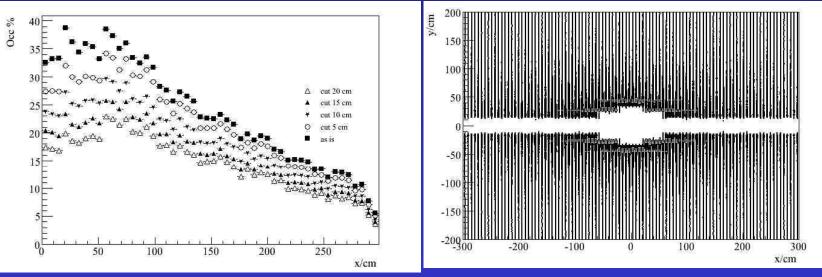

• 40 MHz Front-end chip

- work is starting now
- Must be adaptable to variety of conditions
 - Geometry: Si strips, pixels, photo detectors...
 - Should be capable of zero suppression
 - Should have \geq 3 bit ADC to get best position resolution
- Off-Detector Electronics R&D
 - GBT chip push for the highest possible link speed
 - "New Readout Board"
 - with at least 40 Gbit/s output bandwidth,
 - process ~ 400 Gbit/s of input data
 - New TFC based on GBT and "New Readout Board"
 - 10 Gbit DAQ based on 10 Gigabit Ethernet of Infiniband
 - LO trigger for rate control between 30 and 1 MHz

$\textbf{VELO} \rightarrow \textbf{VESPA}$

- VErtex LOcator replacement called VESPA
- Solution for first upgrade phase (2013)
 - Keep mechanical structure and silicon strip sensors
 - Replace FE chip with 40 MHz readout
 - This device will be rad hard to ~20 fb⁻¹ and will collect data until 2017
- Solution for 2017 will be a complete overhaul
 - Pixels/3D detectors
 - better resolution
 - lower occupancy
 - Possible magnetic field to improve trigger by taking advantage of improved pattern recognition
 - Remove bulky RF shield and replace with wires? Could use liquid N₂ cooling with cold fingers to create good vacuum, making VESPA a cryo-pump at the LHC

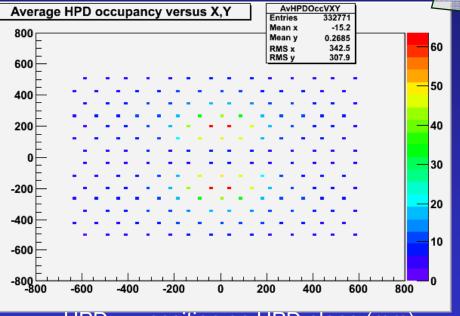
Tracking Systems


• 40 MHz upgrade

- All Si systems have readout chips bonded on hybrid
- Will need to be replaced by 2013 (IT=inner tracker, TT=trigger tracker)
- Ghost tracks
 - are an issue, especially at higher lumi
 - generally thought to be false matches between VELO and tracking systems
- Spillover
 - Can be reduced with faster gas in Outer Tracker (OT)
 - Reduce timing from 75 to 50 ns
- Occupancies
 - Okay for silicon trackers
 - Okay up to 10³³ in OT
 - Increases to 38% near horizontal plane at 2x10³³
 - Reduce material

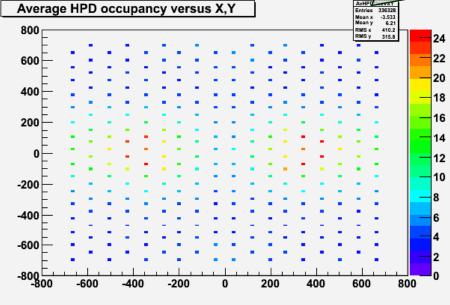
Tracking Systems

- Possible solution for very high luminosity > 10³³
 - Cut horizontal section of OT & increase IT size
 - Likely requires replacing OT rebuild or scintillating-fibre tracker



- Front-end electronics
 - Needs to be adapted to 40 MHz

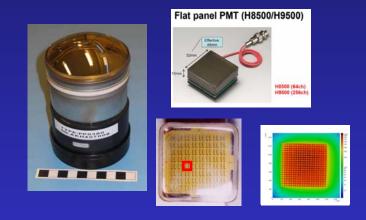
RICH1/RICH2 Occupancies at 2x10³³


Plots show average no. of pixels hit per HPD ~ Average event occupancy/1000

•RICH-1

HPD x,y position on HPD plane (mm)

•RICH-2


HPD x,y position on HPD plane (mm)

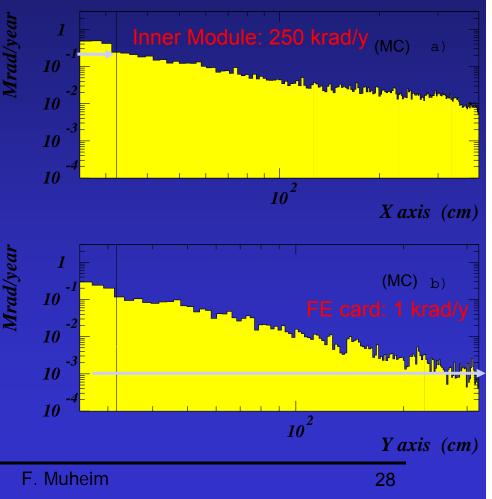
- Maximum average occupancy in RICH-1 is ~6%
- Maximum average occupancy in RICH-2 is ~2.5%

RICH Upgrade

- 40 MHz Readout
 - The readout chip is encapsulated inside the HPD
 - therefore all photon detectors will need to be replaced
- Choice of Photo sensitive device
 - HPD with 40 MHz pixel chip
 - Vacuum PMTs Flat-panel MaPMT, MCP
 - Si-photomultiplier
 - Choice must be made soon
- FE electronics
 - development of pixel chip at 40MHz
 - or external front-end chip for commercial devices
- Option
 - Remove RICH1, replace with ~few ps TOF?
 - Reduces material for tracking

Electromagnetic Calorimeter

Signal efficiency


- Preliminary studies show only minor degradation for $B_s \rightarrow \phi \gamma$

Radiation damage

- At 2x10³³ the worst place has 2.5 Mrad/year, projected useful life is only 3 years
- Clearly need a replacement with rad hard technology for inner part for >2017
- Also useful would be increased segmentation in inner part
- Front-end Board
 - need to be adapted to 40 MHz

Dose at L = $2x10^{32}$

Radiation dose in the LHCb ECAL

Hadron Calorimeter

- Present HCAL will be maintained
 - Should be able to last with some degradation in resolution
 - 2 years running at 2x 10³³ resolution will degrade constant term from 10% to 15%
- Front-end Board
 - need to be adapted to 40 MHz

Muon System

- The major part of the muon detector can very likely operate at 2×10³³ for 5 years
 - Muon detector electronics is already at 40 MHz
- Upgrade of M1 station is not required, it will likely be removed
 - Momentum of muon candidates determined by tracking stations
- Aging
 - Okay for up to 100 fb⁻¹ with the possible exception of region M2R1
 - technology presently adopted for region M1R1 (triple-GEM) will work
- Further studies are required
 - to understand the effects of a larger occupancy of the muon detector on the tracking and the purity of muon identification.

R&D Plan

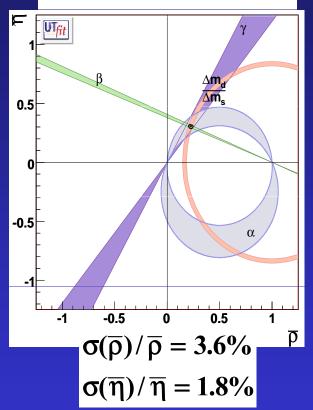
- Develop 40 MHz readout electronics
 - FE chip for tracking and VESPA
 - FE chip for RICH
 - Are assembling team of electronics engineers
 - OT, ECAL, HCAL require adaptations of off-detector electronics
- Create strawman detectors for 2013 & 2017
 - Quantify the gain in useful signal events for L = 10^{33} (2013) & 2×10^{33} (2017) using targeted simulations on specific modes such as $B_S \rightarrow \phi \phi$, $B \rightarrow K^* \mu^+ \mu^-$, $B_S \rightarrow \mu^+ \mu^-$, $\tau^- \rightarrow \mu^- \mu^+ \mu^-$
- Start R&D on each individual detector now
 - Highest R&D priority is to make detectors 40 MHz compatible
 - Top priority is getting physics out of current detector
 - R&D effort will benefit from synergies with ATLAS/CMS on common items

Conclusions

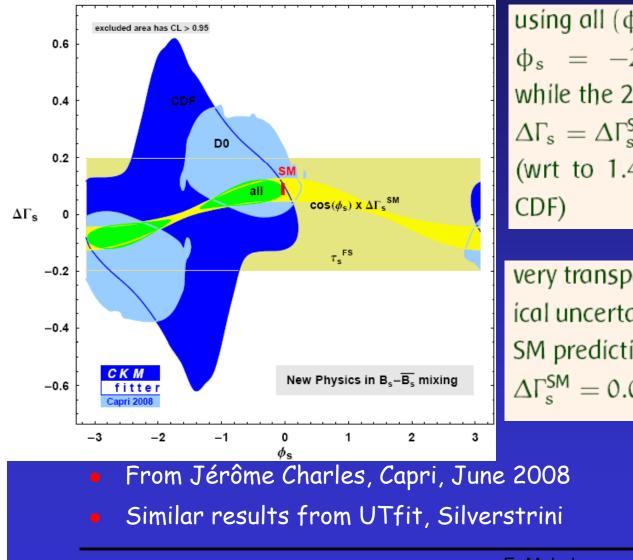
• LHCb Collaboration submitted EoI for LHCb Upgrade

Physics case

- Probing/measuring NP at percent level
- LHCb Upgrade Strategy
 - Upgrade to 40 MHz FE electronics first to run at 10³³ (2014)
 - Upgrade all detectors such that LHCb can operate at luminosity of at least 2×10^{33} in ~ 2017
- R&D plan is evolving fast
 - Design of FE chips for 40 MHz read out
 - Vertex detector upgrade well on track
 - Other subsystems gaining momentum


LHCb Physics Prospects

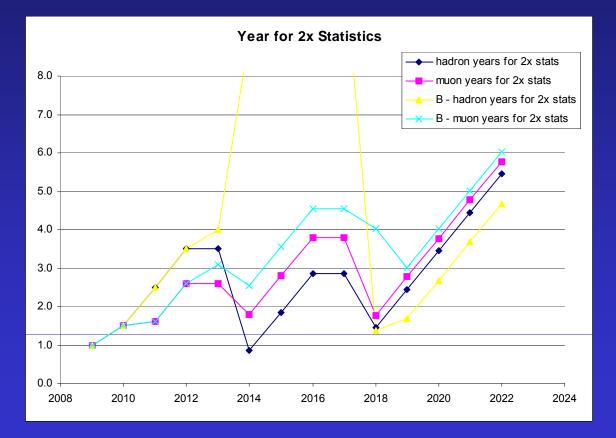
LHCb – first five years


- Lots of opportunities to test SM
- Accumulate 10 fb⁻¹ data sample
- Weak mixing phase ϕ_s in $B_s \rightarrow J/\psi \phi$ If $\phi_s \gg 0 \rightarrow NP$ discovered in mixing
- NP search in rare decays $B_s \rightarrow \mu + \mu$ down to SM level
- $B_s \rightarrow \phi \phi$ if $\phi_s (J/\psi \phi) \neq \phi_s (\phi \phi)$ or $sin2\beta^{eff} \neq sin2\beta \rightarrow NP$ in penguins
- CKM Unitarity Triangle with 2 fb-1, 10 fb-1
 - $-\sigma(\sin(2\beta)) = 0.02, 0.01$
 - σ(γ) = 4.2°, 2.4
 - σ(α) = 10°, 4.5°
 - At precision to probe NP at 10% level
 - Requires theoretical progress
 |Vub| and Lattice QCD (mixing)

10 fb⁻¹ ~2013

CDF & DO May See

using all $(\phi_s, \Delta\Gamma_s)$ inputs, $\phi_s = -2\beta_s$ is excluded at 2.4 σ , while the 2D hypothesis $\phi_s = -2\beta_s$, $\Delta\Gamma_s = \Delta\Gamma_s^{SM}$ is excluded at only 1.9 σ (wrt to 1.4 σ from FC treatment by CDF)


very transparent analysis: all theoretical uncertainties are contained in the SM prediction $\Delta\Gamma_{\rm s}^{\rm SM} = 0.090^{+0.017}_{-0.022}$ ps (red line)

LHCC meeting CERN, 22/23 Sept 2008 F. Muheim

Time to double dataset

- Proposal vs no Phase 1 upgrade (B)
 - Running on muon trigger at 10³³ until Phase 2 upgrade

LHCC meeting CERN, 22/23 Sept 2008 F. Muheim

Proposed R&D - Electronics

• GBT chip

 active LHCb involvement is highly recommended, in particular to push for the highest possible link speed

- "New Readout Board"
 - with at least 40 Gbit/s output bandwidth and the possibility to process ~ 400 Gbit/s of input data.
- New TFC
 - based on GBT and "New Readout Board"
- 10 Gbit DAQ
 - Based on 10 Gigabit Ethernet of Infiniband
- LO trigger
 - For rate control between 30 and 1 MHz

