

A CE upgrade plans

Jean-Pierre Revol LHCC upgrade session CERN, September 23, 2008

- ALICE upgrade not linked to LHC high luminosity upgrade; Concerning possible PbPb luminosity improvement, see later.
- ❑ Large uncertainty in the PbPb multiplicity environment and while there is clear indication from RHIC of what should be initially measured (Flow, jets, Baryon/meson, High p_T flavours), there have always been surprises in the past (RHIC) even in pp with high multiplicity trigger there could be new issues.
- Final strategic choices for the ALICE upgrade programme can only be made when the first pp and PbPb data have been analyzed.

⇒ importance to ALICE to have the first heavy ion run as early as possible!

However, some elements of the upgrade programme are already identified, because they are based on:

- ➢evolution of physics issues since the time of design of the detector (15 years!) (e.g. baryon production @ RHIC);
- ➢improvement of technologies and already acquired experience with silicon detectors;
- ➢removal of some LHC machine constraints, in particular on our tracker design (input needed from LHC machine group).

First 5 years: full exploitation of present ALICE detector:

⊠First pp run

- ≥1 yr (10⁶s) Pb-Pb at low Luminosity (initially \sim 1/20th design, i.e. L \sim 5x10²⁵ cm⁻²s⁻¹)
- \boxtimes 1-2 yrs Pb-Pb at nominal L~10^{27}, targeting integrated L~0.5-1nb^{-1} but <L> ~ ½ or ½ of L_{max} and depends on sharing among experiments
- \boxtimes 1 yr p-A (initial state interaction effects)
- ≥1 yr low mass A-A (system size dependence)
- ⊠Continuous running with p-p (comparison data and some genuine pp physics: charm, baryon, high multiplicity, etc.)

Following 5 years:

- ➢Programme and priorities to be decided based on results from the first 5 years:
 - Lower energies (energy dependence, thresholds, pp at 5.5 TeV);
 - Additional AA and pA combinations;
 - Increased statistics for PbPb.

Globe of Innovation

LHC schedule assumptions (until last week):

 \ll First pp collisions before the end of 2008? \gg \ll First PbPb collisions before the end of 2009? \gg

[September 2010 Next Quark Matter conference, Annecy (co-sponsored by CERN)]

2008-2011 Detector Completion (TRD, PHOS, EmCal, PMD), data taking/analysis; some maintenance.

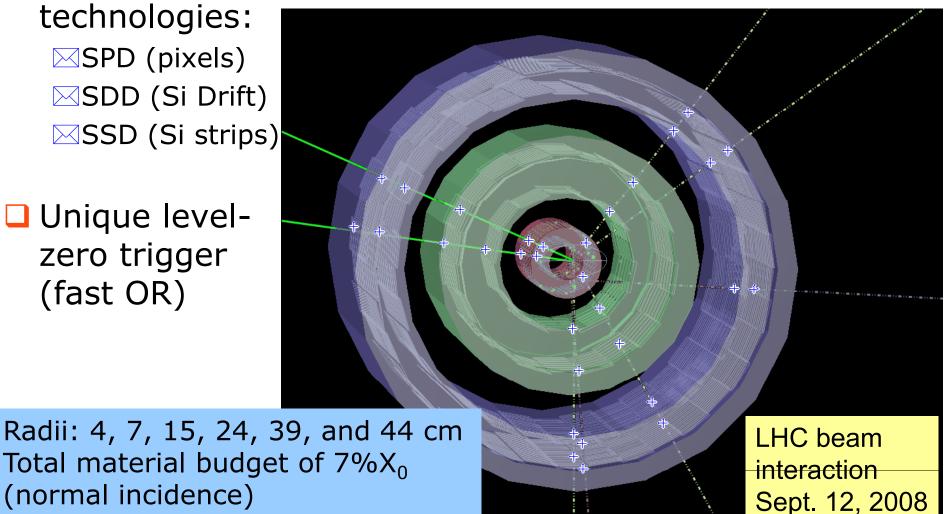
2009-2011 Detector R&D and definition of upgrade plan (requires significant simulation effort, not possible so far)

2010-2011 Decision on upgrade, funding approval, etc.

2011-2014 Construction of new detectors

□ 2013-15 Installation of upgraded detectors

Inner Tracking System upgrade Globe of


Present 6 detector layers based on three silicon

technologies: \bowtie SPD (pixels) ⊠SDD (Si Drift) \boxtimes SSD (Si strips)

Unique levelzero trigger (fast OR)

(normal incidence)

Beam pipe radius 2.98 cm

Improving the impact parameter resolution by a factor 2 or better will:

 \boxtimes Increase sensitivity to charm by factor 100;

Give access to charmed baryons (baryon/meson ratio in charm sector – main issue is understanding of recombination);

 \bowtie Allow study of exclusive B decays;

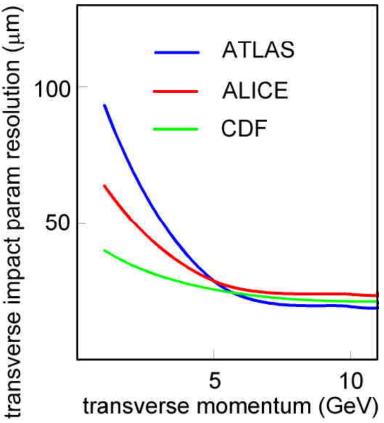
 \bowtie Allows first measurement of total B production cross section down to zero P_T;

 \boxtimes Improve flavour tagging.

Thinnest and smallest beam pipe (à la CDF):

 \bowtie Present radius of 2.9 cm reduced to ~1.3 cm?

 \boxtimes Wall thickness from present Be 800 μ m to 400 μ m?

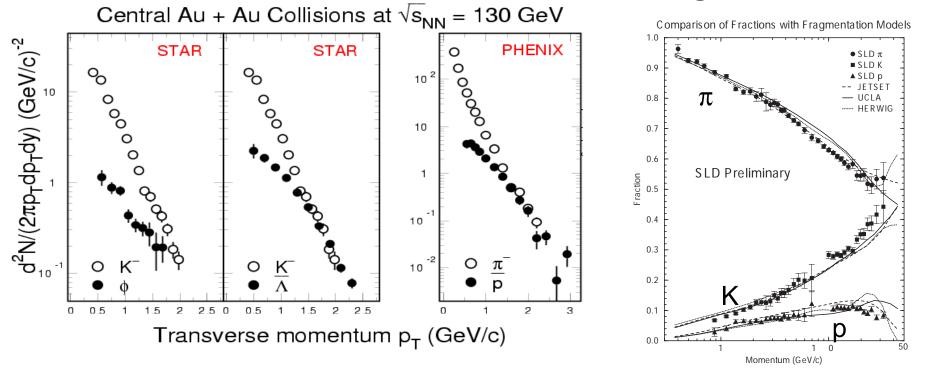

 \boxtimes Or, first layer inside beam pipe?

□ Choose pixel technology:

 \boxtimes thinnest (\leq 200µm + 150µm);

 \boxtimes higher granularity (\leq 150µmx425µm)

- ➢higher readout frequency (Present 10 MHz, does not allow to trigger on each p bunch crossing).
- ⊠Signal/noise; power consumption;
- ➢Trigger capability; Cost (bonding?) (radiation tolerance not an issue for ALICE− improves as pixels become thinner)

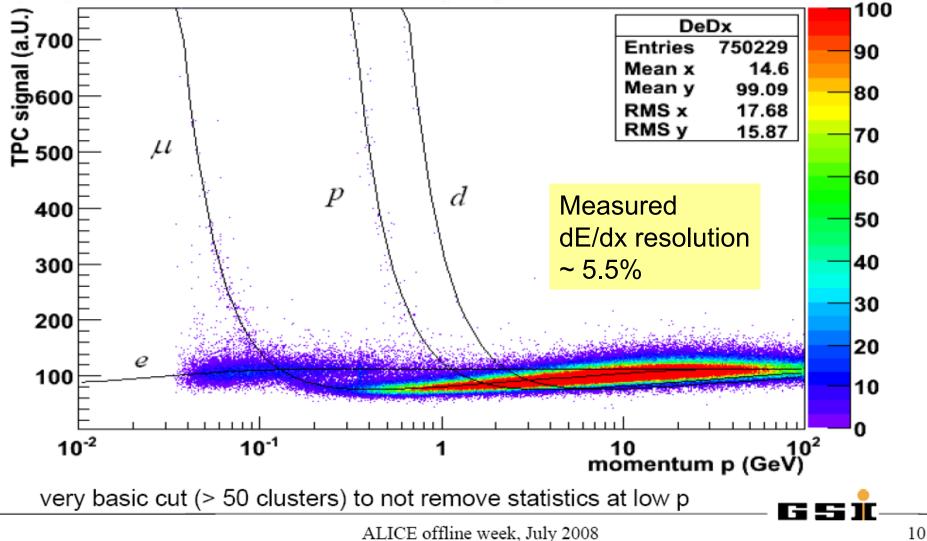

Strategy:

- ➢Assess present SDD and SSD performance, to pick solution from pixel only solution (à la CMS) to mixed pixel + SSD or/and SDD?
- Momentum analysis from ITS?
- When we have measured the multiplicity in PbPb collisions then we can optimize number of layers, pseudorapidity coverage, etc. (simulation effort).

- Globe of Innovation
 - Problem of obsolescence of elements essential to the current architecture, namely the PC I/O bus. Supply becomes limited, and can be a problem in the medium-term.
 - A transition to a new I/O bus can be implemented gradually, but it requires upfront a new interface card DDL-PC:
 - ➢Project of the order of a couple of years for one good engineer full-time
 - development phase
 - 500 DDL cards to replace (of the order of half a million CHF) Part of it financed from normal DAQ maintenance budget as PC replacement is anyway necessary.
 - CERN-PH's plan for detector upgrades for LHC has a highspeed optical link (*VERSATILE LINK*) of high generality. If successful, it could suit us. One ALICE person contributing.

Particle Identification upgrade

At the time of design of present HMPID (proximity focusing Ring Imaging Cherenkov Detector), PID up to 5 GeV/c thought more than sufficient. RHIC has shown the need to go beyond 10 GeV/c to understand the interplay between recombination and fragmentation.

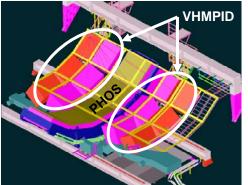


□ Identified particles at high P_T is necessary to study the flavour dependence of jet fragmentation as well as the gluon/quark origin of the jet.

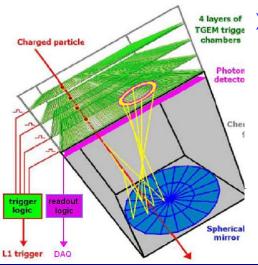
- Identifying jet type is important as for instance, the quenching which probes the QGP medium is sensitive to the type of jet.
- In pp, need to improve understanding of flavour dependence of multiparticle production.
- However, for a strategic choice of a new PID technology, we need to assess the performance of the TPC.

PID calibration with cosmics data (1)

5,000,000 cosmic events from June 2008, simple Kr calibration


VHMPID

Detector assembly layout


⊠Would be located on both sides of PHOS, below space frame;

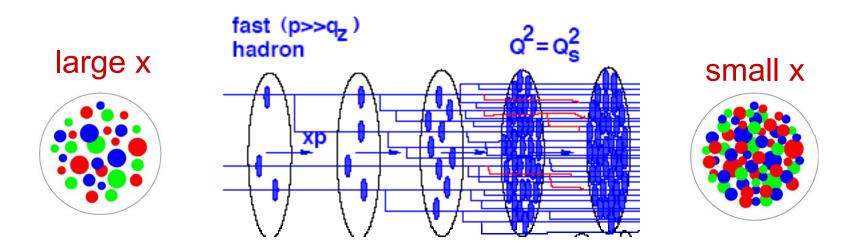
RICH-like detector with mirrors, Gas radiator (C4F10?) maximum length ~80cm;

VHMPID ≻Photon detector:

- MWPC with CsI photon converter and pad readout (current HMPID technology);
- ■Resistive Thick GEM (≥2 layers) with CsI photon converter (promising preliminary results).

> Dedicated trigger logic to select high p_T

use of TRD detector;


•4 layer GEMs detector with algorithm selecting high p_T particles (new trigger detector);

 use of EMCAL detector, opposite to beam line, triggering on high energy jets.

Preliminary discussions on Forward calorimetry:

Neutral meson (π^0 , η) production at forward rapidities, for low x physics (Colour Glass Condensate), more generally the issue of parton saturation.

- Rare physics items, (e.g. γ-jet correlations, Y, and a number of hard signals) require an improvement of statistics by a factor 10, to go beyond current proposal:
 - ⊠We understand that a factor 4 to 5 improvement is conceivable from beam collision peak luminosity increase, and luminosity lifetime increase;
 - ⊠An additional factor will come from the detector efficiency improvement.
- If it is confirmed that PbPb multiplicities are much lower than 8000 particles per unit of rapidity, then TPC and foreseen upgrades can cope with this (not a strong constraint).

- We will continue R&D on extending PID capabilities to higher p_T, and we will start soon R&D on ITS upgrade, DAQ upgrade (inevitable), and possibly forward calorimetry.
- Computing development (upgrade?) will have to follow the developments of detectors and DAQ.
- □ Finalizing the ALICE upgrade plan requires first pp and PbPb data analysis.