
LEMON – Monitoring in the
CERN Computer Centre

Helge Meinhard / CERN-IT
LCG Project Execution Board

23 September 2003

Outline

� LEMON – Monitoring
� Overview
� MSA and sensors
� MSA → repository transport
� Repository
� Query API and displays
� Local recovery, derived metrics, QoS

� LEAF – Advanced fabric management
� Hardware management system
� State management system
� Fault tolerance, HSM operator interface

Lhc Era MONitoring

LEMON Overview

Measurement Repository (MR)Monitored nod es

Sensor Monitoring S ensor

A g ent (MS A)

C ac h eConsumer
L oc al C onsumer

Sensor
S ensor

Consumer
Consumer

G l ob al C onsumer

Monitoring Sensor Agent
• C al l s pl ug - in sensors to sampl e c onf ig ured

metric s

• S tores al l c ol l ec ted d ata in a l oc al d isk

b uf f er

•S end s th e c ol l ec ted d ata to th e g l ob al

repository

P l u g- in sensors
• P rog rams/ sc ripts th at impl ement a simpl e sensor-

ag ent A S C I I tex t protoc ol

• A C + + interf ac e c l ass is prov id ed on top of th e tex t

protoc ol to f ac il itate impl ementation of new sensors

T h e l oc a l c a c h e
•A ssures d ata is

c ol l ec ted al so w h en

nod e c annot c onnec t to

netw ork

•A l l ow s f or nod e

autonomy f or l oc al

repairs

T ra nsp ort
• T ransport is pl ug g ab l e.

• T w o protoc ol s ov er U D P and T C P are

c urrentl y supported w h ere onl y th e l atter c an

g uarantee th e d el iv ery

Mea su rem ent R ep ository
• T h e d ata is stored in a d atab ase

• A memory c ac h e g uarantees f ast ac c ess

to most rec ent d ata, w h ic h is normal l y

w h at is used f or f aul t tol eranc e

c orrel ations

D atab ase

R ep ository AP I
•S O A P RP C

•Q uery h istory d ata

•S ub sc ription to new

d ata

D a ta b a se
•P roprietary f l at- f il e d atab ase

•O rac l e

•G eneric interf ac e (O D B C)

b eing d ev el oped

MSA and Sensors

� MSA stable for almost 2 years and in production on
GNU/Linux machines at CERN for ~ 18 months
� Increasing functionality over the period

� Sensors deployed on GNU/Linux to provide
performance and exception metrics for HW, OS and
application-specific items (eg. batch schedulers)
� 150 metrics defined
� Installed on almost 20 different clusters, 1500 nodes. 80-120

metrics collected per node depending on the cluster.

� Now developing sensors to collect other information,
specifically from disk & tape servers
� Much code already exists; need to bring measurements

under the Lemon framework and collect metrics centrally

MSA � Repository Transport

� EDG/WP4 specific UDP based protocol in production.
� Potential concern about routers dropping UDP packets, but

no problem today
� No security: anybody can inject any value into the repository

� TCP version of EDG/WP4 specific protocol tested
� Some concern about load of multiple permanently open

sockets on repository → proxies developed
� Required for security (but nothing tested here) and also to

resend metrics after network failure

� Need work to interface to SNMP world
� E.g. for routers and switches
� SNMP has been tested successfully for input to PVSS

repository
� Could be implemented as additional sensor, too

LEMON Repository (1)

� Oracle-based repository required for long term storage
of metrics
� Needed to understand detailed (node to node) performance

issues over required timescales (days…months)
� Don’t want compression of data

� Oracle-based EDG/WP4 repository (OraMon) in
production

� Alternative approach: PVSS-based repository, in
production

LEMON Repository (2)

� These two alternatives compared earlier this year
� Found that both systems can do the job, and are both

necessary to fully address our requirements
� Native Oracle archive for PVSS, promised for end-2003, is potentially

interesting given our requirements…

� Decision (June): have all clients feed data both to OraMon
repository and to PVSS

� Scaling limitations seen with both repositories already; very
likely that the final (2006) system will run on multiple
repositories of the same kind
� Imminent deployment of smoothing at MSA level will alleviate this

problem

Query API & Displays (1)

� EDG/WP4 defined an API to retrieve metrics
� Implementations exist for Oracle repository (in C) and for

direct extraction from PVSS (in C and Perl)
� Perl (for OraMon) and command line implementations still to

be done

� Operator and synoptic displays created for PVSS
� Scales well with number of client machines so far
� Used by bat. 513 operators in test mode for > 6 months

(production system based on old SURE system)

Query API & Displays (2)

� Display situation for EDG/WP4:
� Java/swing alarm displays for small-scale clusters

in development
� A Java-based time series display exists but does

not work for all browsers
� Some simple web displays also exist (table based

display of metric values extracted with the API)
� Clarification about future directions needed

Local Recovery Actions

� Two parts:
� a framework to interface to the repository

� This “subscribes” to metrics and is alerted when metric
values meet a defined condition

� Actuators
� invoked as necessary by framework to take action (e.g.

restart a daemon)

� A Framework has been developed by
Heidelberg as part of EDG/WP4
� Successfully invokes actuators in simple cases
� More complex cases still to be tested
� Work needed at CERN to implement actuators but

lower priority than…

Derived Metrics

� Created upon values read from the repository
and, perhaps, elsewhere, typically combining
metrics from different nodes
� e.g. maximum [system load|/tmp usage|/pool

usage] on batch nodes running jobs for
[alice|atlas|cms|lhcb]

� Sampled regularly, and/or triggered by value
changes

� Investigating whether EDG Framework is useful
(and whether we wish to use it…)
� Alternative implementation: Just another sensor

Quality of Service

� Essentially, a derived metric
� per-application combination of system

parameters that affect performance of the
application on a node or on the overall service

� Initial BARC work was for a CPU bound
application
� Wall clock time increases with system load.

Little affected by anything else except
swapping

� Now looking at other applications, in particular
with I/O requirements

LEMON Status

� Sensors, MSA and OraMon and PVSS
repositories are running in production, and
running well
� Status of, e.g. lxbatch, nodes has much

improved since initial sensor/MSA
deployment

� Solaris port working

� Still much work to do, though, notably for
displays, derived metrics and local
recovery

�������� �� �� �� ��

LEAF Components

� HMS Hardware Management System

� SMS State Management System

� Fault Tolerance

�������� �� �� �� ��

HMS

� HMS tracks systems through steps of HW life
cycle; defined, implemented and in production:
� Install
� Move
� Retire
� Repair (vendor call)

� HMS was used (inter alia) to manage the
migration of systems to the vault

� Some developments/improvements needed as
other systems develop

�������� �� �� �� ��

SMS

� Use cases:
� “Give me 200 nodes, any 200. Make them like this. By then.”
� “Take this sick node out of lxbatch”

� Tightly coupled to Lemon to understand current state,
and to CDB to record changes of desired state, which
SMS must update

� Analysis & requirements documents discussed. Led to
architecture prototype and definition of interfaces to
CDB

� Aim for initial SMS driven state change by the end of
the year

�������� �� �� �� ��

Fault Tolerance

� Requires actions such as reallocating a disk server to
experiment A “because one of theirs has failed and
they are the priority users at present”

� Could also
� reallocate a disk server to experiment B because this looks a

good move given the LSF/Castor load
� reconfigure LSF queue parameters at night or weekend

based on workloads and budgets

� Essentially just a combination of derived metrics and
SMS
� Concentrate on building the basic elements for now and start

with simple use cases when we have the tools

�������� �� �� �� ��

HSM Operator interface

� Ought to be a GUI on top of an intelligent
combination of �������, Lemon and LEAF

� Want to be able to (re)allocate disk space
(servers) to users/applications as necessary

� These are CDB and SMS issues
� But strong requirements on Castor and the stager

� Many of the necessary stager changes planned for next year

� In the meantime, concentrate on extending CDB to
cover definition of, e.g., staging pools

�������� �� �� �� ��

Conclusion

� FIO have gone a long way in the direction
of fabric automatisation
� Still a long way to go

� Some areas still sketchy

� We have started to see enormous benefits
already

