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MSA and Sensors

� MSA stable for almost 2 years and in production on 
GNU/Linux machines at CERN for ~ 18 months
� Increasing functionality over the period

� Sensors deployed on GNU/Linux to provide 
performance and exception metrics for HW, OS and 
application-specific items (eg. batch schedulers)
� 150 metrics defined
� Installed on almost 20 different clusters, 1500 nodes. 80-120 

metrics collected per node depending on the cluster.

� Now developing sensors to collect other information, 
specifically from disk & tape servers
� Much code already exists; need to bring measurements 

under the Lemon framework and collect metrics centrally



MSA � Repository Transport

� EDG/WP4 specific UDP based protocol in production.
� Potential concern about routers dropping UDP packets, but 

no problem today
� No security: anybody can inject any value into the repository

� TCP version of EDG/WP4 specific protocol tested
� Some concern about load of multiple permanently open 

sockets on repository → proxies developed
� Required for security (but nothing tested here) and also to 

resend metrics after network failure

� Need work to interface to SNMP world
� E.g. for routers and switches
� SNMP has been tested successfully for input to PVSS 

repository
� Could be implemented as additional sensor, too



LEMON Repository (1)

� Oracle-based repository required for long term storage 
of metrics
� Needed to understand detailed (node to node) performance 

issues over required timescales (days…months)
� Don’t want compression of data

� Oracle-based EDG/WP4 repository (OraMon) in 
production

� Alternative approach: PVSS-based repository, in 
production



LEMON Repository (2)

� These two alternatives compared earlier this year
� Found that both systems can do the job, and are both 

necessary to fully address our requirements
� Native Oracle archive for PVSS, promised for end-2003, is potentially 

interesting given our requirements…

� Decision (June): have all clients feed data both to OraMon
repository and to PVSS

� Scaling limitations seen with both repositories already; very 
likely that the final (2006) system will run on multiple 
repositories of the same kind
� Imminent deployment of smoothing at MSA level will alleviate this 

problem



Query API & Displays (1)

� EDG/WP4 defined an API to retrieve metrics 
� Implementations exist for Oracle repository (in C) and for 

direct extraction from PVSS (in C and Perl)
� Perl (for OraMon) and command line implementations still to 

be done

� Operator and synoptic displays created for PVSS
� Scales well with number of client machines so far
� Used by bat. 513 operators in test mode for > 6 months 

(production system based on old SURE system)







Query API & Displays (2)

� Display situation for EDG/WP4: 
� Java/swing alarm displays for small-scale clusters  

in development
� A Java-based time series display exists but does 

not work for all browsers
� Some simple web displays also exist (table based 

display of metric values extracted with the API)
� Clarification about future directions needed



Local Recovery Actions

� Two parts:
� a framework to interface to the repository

� This “subscribes” to metrics and is alerted when metric 
values meet a defined condition

� Actuators
� invoked as necessary by framework to take action (e.g. 

restart a daemon)

� A Framework has been developed by 
Heidelberg as part of EDG/WP4
� Successfully invokes actuators in simple cases
� More complex  cases still to be tested
� Work needed at CERN to implement actuators but 

lower priority than…



Derived Metrics

� Created upon values read from the repository 
and, perhaps, elsewhere, typically combining 
metrics from different nodes
� e.g. maximum [system load|/tmp usage|/pool 

usage] on batch nodes running jobs for 
[alice|atlas|cms|lhcb]

� Sampled regularly, and/or triggered by value 
changes

� Investigating whether EDG Framework is useful 
(and whether we wish to use it…)
� Alternative implementation: Just another sensor



Quality of Service

� Essentially, a derived metric
� per-application combination of system 

parameters that affect performance of the 
application on a node or on the overall service

� Initial BARC work was for a CPU bound 
application
� Wall clock time increases with system load. 

Little affected by anything else except 
swapping

� Now looking at other applications, in particular 
with I/O requirements



LEMON Status

� Sensors, MSA and OraMon and PVSS 
repositories are running in production, and 
running well
� Status of, e.g. lxbatch, nodes has much 

improved since initial sensor/MSA 
deployment

� Solaris port working

� Still much work to do, though, notably for 
displays, derived metrics and local 
recovery
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LEAF Components

� HMS Hardware Management System

� SMS State Management System

� Fault Tolerance
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HMS

� HMS tracks systems through steps of HW life 
cycle; defined, implemented and in production:
� Install
� Move
� Retire
� Repair (vendor call)

� HMS was used (inter alia) to manage the 
migration of systems to the vault

� Some developments/improvements needed as 
other systems develop
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SMS

� Use cases: 
� “Give me 200 nodes, any 200. Make them like this. By then.”
� “Take this sick node out of lxbatch” 

� Tightly coupled to Lemon to understand current state, 
and to CDB to record changes of desired state, which 
SMS must update

� Analysis & requirements documents discussed. Led to 
architecture prototype and definition of interfaces to 
CDB

� Aim for initial SMS driven state change by the end of 
the year
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Fault Tolerance

� Requires actions such as reallocating a disk server to 
experiment A “because one of theirs has failed and 
they are the priority users at present”

� Could also
� reallocate a disk server to experiment B because this looks a 

good move given the LSF/Castor load
� reconfigure LSF queue parameters at night or weekend 

based on workloads and budgets

� Essentially just a combination of derived metrics and 
SMS
� Concentrate on building the basic elements for now and start 

with simple use cases when we have the tools
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HSM Operator interface

� Ought to be a GUI on top of an intelligent 
combination of �������, Lemon and LEAF

� Want to be able to (re)allocate disk space 
(servers) to users/applications as necessary

� These are CDB and SMS issues
� But strong requirements on Castor and the stager

� Many of the necessary stager changes planned for next year

� In the meantime, concentrate on extending CDB to 
cover definition of, e.g., staging pools
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Conclusion

� FIO have gone a long way in the direction 
of fabric automatisation
� Still a long way to go

� Some areas still sketchy

� We have started to see enormous benefits 
already


