Fabric Management: Progress and Plans

PEB

Tim Smith IT/FIO

Contents

- Manageable Nodes
- Framework for management
- Deployed at CERN
- Plans

- Linux Standards Base
 - http://www.linuxbase.org
- Distributed / Autonomous
 - Decoupling of nodes
 - Local config files
 - Local programs do all work
 - Avoid inherent drift
 - No external crontabs
 - No remote mgmt scripts
 - No remote application updates
 - No parallel cmd engines
 - No global file-systems AFS/NFS

All SW in RPM

Control complete SW set

Manage through SysV scripts

Framework Principles

Installation

- Automation of complete process
- Reproducible
- Clear installation:
 - Short, clean, and reproducible Kickstart base installation
 - All Software installation by RPM
 - System configuration by one tool
 - Configuration information through unique interface, from unique store

Maintenance:

- The running system must be 'updateable'
- The updates must go into new installations afterwards
- System updates have to be automated, but steerable

Framework for Management

Framework for Management

quattor configuration **aquattor**

Config/SW Considerations

- Hierarchical configuration specification
 - Graph rather than tree structure
 - Common properties set only once
- Node profiles
 - Complete specification in one XML file
 - Local cache
 - Transactions / Notifications
- Externally specified, Versioned: CVS repos.
- One tool to manage all SW: SPMA
 - System and application
- Update verification nodes + release cycle
- Procedures and Workflows

NCM details

- Modules:
 - "Components"
 - Invocation and notification framework
 - Component support libraries
 - Configuration query tool
- NCM is responsible for ensuring that reality on a node reflects the desired state in CDB.
 - components which make the necessary system changes
 - components do not install software, just ensure config is correct
 - components register with the framework to be notified when the node configuration is updated in CDB.
 - Usually, this implies regenerating and/or updating local config files (eg. /etc/sshd_config)
 - Use standard system facilities (SysV scripts) for managing services
 - Components notify services using SysV scripts when cfg changes.
 - Possible to define configuration dependencies between components
 - Eg. configure network before sendmail

Hardware variety

```
structure template
                                               hardware_cpu_GenuineIntel_Pentium_III_1100;
                                                  "vendor" = "GenuineIntel":
                                                  "model" = "Intel(R) Pentium(R) III CPU family 1133MHz";
                                                  "speed" = 1100:
hardware_diskserv_elonex_1100
hardware_e]onex_500
hardware_elonex_600
hardware_elonex_800
hardware_elonex_800_mem1024mb
hardware_elonex_800_mem128mb
                                                template hardware diskserver elonex 1100:
hardware_seil_2002
hardware_seil_2002_interactiv
hardware_seil_2003
                                                "/hardware/cpus" = list(create("hardware cpu GenuineIntel Pentium III 1100").
                                                                        create("hardware_cpu_GenuineIntel_Pentium_III_1100"));
hardware siemens 550
                                               "/hardware/harddisks" = nlist("sda", create("pro_hardware_harddisk_WDC_20"));
"/hardware/ram" = list(create("hardware_ram_1024"));
hardware_techas_600
hardware_techas_600_2
                                                "/hardware/cards/nic" = list(create("hardware_card_nic_Broadcom_BCM5701"));
hardware_techas_600_mem512mb
hardware techas 800
                                                structure template hardware card nic Broadcom BCM5701:
                                                  "manufacturer" = "Broadcom Corporation NetXtreme BCM5701 Gigabit Ethernet":
                                                  "name"
                                                                = "3Com Corporation 3C996B-T 1000BaseTX";
                                                                = "GigaBit Ethernet";
                                                  "media"
                                                  "bus"
                                                                = "pci":
```

What is in CDB?

- Hardware
 - CPU
 - Hard disk
 - Network card
 - Memory size
 - Location
- Software
 - Repository definitions
 - Service definitions = groups of packages (RPMs)
- System
 - Partition table
 - Cluster name and type
 - CCDB name
 - Site release
 - Load balancing information

quattor installation

SWRep

- Client-server toolsuite for the storage of software packages
- Universal repository:
 - Extendable to multiple platforms and package formats (RHLinux/RPM, Solaris/PKG,... others like Debian dpkg)
 - Multiple package versions/releases
 - Currently, RPM for RH73, RH21ES and soon RH10 on LXSERV cluster
- Management ("product maintainers") interface:
 - ACL based mechanism to grant/deny modification rights (packages associated to "areas")
 - Management done by FIO/FS
- Client access: via standard protocols
 - On LXSERV: HTTP
- Replication: using standard tools (eg. rsync)
 - Availability, load balancing

SPMA

- Runs on every target node
 - All LXPLUS/LXBATCH/LXSHARE/ ... nodes; except old RH61 nodes
- Plug-in framework allows for portability
 - FIO/FS uses it for RPM, PS group will use it for Solaris (PKG)
- Can manage either all or a subset of packages on the nodes
 - Configured by FIO/FS to manage ALL packages.
 - Which means: Not configured packages are wiped out.
 - And: Packages missing on node but in configuration are (re)installed.
- Addresses scalability
 - Packages can be stored ahead in a local cache, avoiding peak loads on software repository servers (simultaneous upgrades of large farms)

SPMA (II)

- SPMA functionality:
 - 1. Compares the packages currently installed on the local node with the packages listed in the configuration
 - 2. Computes the necessary install/deinstall/upgrade operations
 - 3. Invokes the packager RPMT/PKGT with the right operation transaction set
- RPMT (RPM transactions) is a small tool on top of the RPM libraries, which allows for multiple simultaneous package operations resolving dependencies (unlike RPM)
 - Example: 'upgrade X, deinstall Y, downgrade Z, install T' and verify/resolve appropriate dependencies

Currently deployed at CERN

- Scale
 - 1400 node profiles
 - 3M lines of node XML specifications
 - From 28k lines of PAN definitions
- Scalability
 - 3 node load balanced web servers cluster
 - For Configuration profiles
 - For SW Repository
 - Time smeared transactions
 - Pre-deployment caching
- Security
 - GPG key pair per host during installation
 - Per host encrypted files served

Examples

- Clusters
 - LXPLUS, LXBATCH, LXBUILD, LXSHARE, OracleDBs
 - TapeServers, DiskServers, StageServers
- Supported Platforms
 - RH7.3.3 2400 packages
 - RHES 1300 packages
 - RH10
- KDE/Gnome security patch rollout
 - 0.5 GB onto 700 nodes
 - 15 minute time smearing from 3 lb-servers
- LSF 4-5 transition
 - 10 minutes
 - No queues or jobs stopped
 - C.f. last time 3 weeks, 3 people!

Plans

- Deploying NCM
 - Port SUE features to NCM for RH10
 - Use for Solaris10
- Deploying State Manager (SMS)
- Use case targetted GUIs
- Web Servers
 - Split: FrontEnd / BackEnd Architecture

Conclusions

- Maturity brings...
 - Degradation of initial state definition
 - HW + SW
 - Accumulation of innocuous temporary procedures
- Scale brings...
 - Marginal activities become full time
 - Many hands on the systems
- Combat with strong management automation