QCD Phenomenology at High Energy

Bryan Webber

CERN & Univ. Cambridge

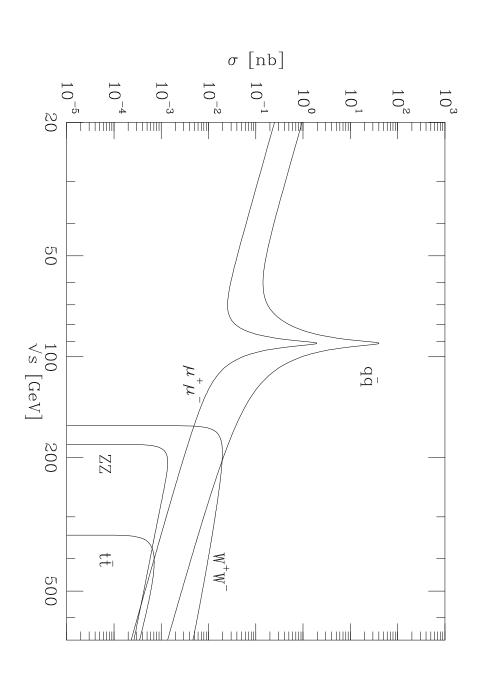
CERN Academic Training Lectures, October 2003

Lecture 2: e⁺e⁻ & parton branching

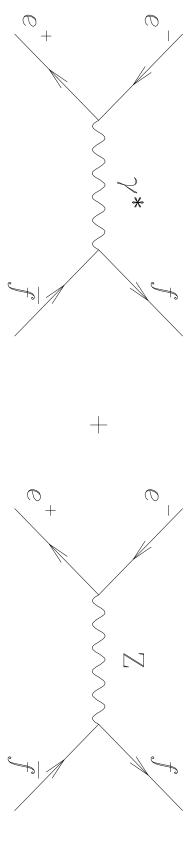
- e⁺e⁻ annihilation
- ❖ Total cross section
- * Shape distributions
- * Jet fractions
- Parton branching
- Kinematics
- Splitting functions
- * Phase space
- * 4-jet angular distribution

 e^+e^- annihilation cross section

 $e^+e^- \rightarrow q\bar{q}$, will produce hadrons. Cross sections are roughly proportional. $\rightarrow \mu^+\mu^-$ is a fundamental electroweak processes. Same type of process,



- Since formation of hadrons is non-perturbative, how can PT give hadronic cross section? This can be understood by visualizing event in space-time:
- \bullet e⁺ and e⁻ collide to form γ or Z^0 with virtual mass $Q = \sqrt{s}$. This fluctuates short-distance process given by PT. into $q\bar{q}$, $q\bar{q}g$,..., occupy space-time volume $\sim 1/Q$. At large Q, rate for this



- \diamond Subsequently, at much later time $\sim 1/\Lambda$, produced quarks and gluons form probability for event to happen. hadrons. This modifies outgoing state, but occurs too late to change original
- Well below Z^0 , process $e^+e^- \to ff$ is purely electromagnetic, with lowest-order (Born) cross section (neglecting quark masses)

$$\sigma_0 = rac{4\pilpha^2}{3s} \, Q_f^2$$

Thus $(3 = N = \text{number of possible } q\bar{q} \text{ colours})$

$$R \equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = \frac{\sum_q \sigma(e^+e^- \to q\bar{q})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_q Q_q^2.$$

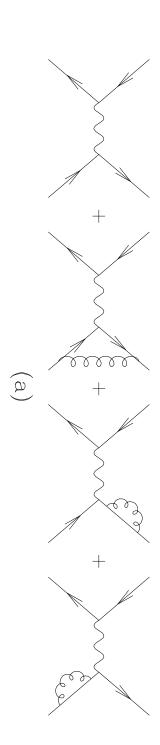
On Z^0 pole, $\sqrt{s} = M_Z$, neglecting γ/Z interference

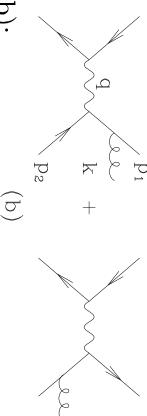
$$\sigma_0 = \frac{4\pi\alpha^2\kappa^2}{3\Gamma_Z^2} \left(a_e^2 + v_e^2\right) \left(a_f^2 + v_f^2\right)$$

where $\kappa = \sqrt{2G_F M_Z^2}/4\pi\alpha = 1/\sin^2(2\theta_W) \simeq 1.5$. Hence

$$R_Z = \frac{\Gamma(Z \to \text{hadrons})}{\Gamma(Z \to \mu^+ \mu^-)} = \frac{\sum_q \Gamma(Z \to q\bar{q})}{\Gamma(Z \to \mu^+ \mu^-)} = \frac{3\sum_q (a_q^2 + v_q^2)}{a_\mu^2 + v_\mu^2}$$

Measured cross section is about 5% higher than σ_0 , due to QCD corrections. For massless quarks, corrections to R and R_Z are equal. To $\mathcal{O}(\alpha_{\mathrm{S}})$ we have:





- Real emission diagrams (b):
- * Write 3-body phase-space integration as

$$d\Phi_3 = [\ldots] d\alpha \, d\beta \, d\gamma \, dx_1 \, dx_2 \; ,$$

 α, β, γ are Euler angles of 3-parton plane,

$$x_1 = 2p_1 \cdot q/q^2 = 2E_q/\sqrt{s},$$

 $x_2 = 2p_2 \cdot q/q^2 = 2E_{\bar{q}}/\sqrt{s}.$

* Applying Feynman rules and integrating over Euler angles:

$$\sigma^{q\bar{q}g} = 3\sigma_0 C_F \frac{\alpha_S}{2\pi} \int dx_1 dx_2 \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$
.

 $x_3 = 2k \cdot q/q^2 = 2E_g/\sqrt{s} = 2 - x_1 - x_2.$ Integration region: $0 \le x_1, x_2, x_3 \le 1$ where

* Integral divergent at $x_{1,2} = 1$:

$$\begin{aligned}
 1 - x_1 &= \frac{1}{2} x_2 x_3 (1 - \cos \theta_{qg}) \\
 1 - x_2 &= \frac{1}{2} x_1 x_3 (1 - \cos \theta_{\bar{q}g})
 \end{aligned}$$

 $x_3 \to 0$. Singularities are not physical – simply indicate breakdown of PT when energies and/or invariant masses approach QCD scale Λ Divergences: collinear when $\theta_{qg} \to 0$ or $\theta_{\bar{q}g} \to 0$; soft when $E_g \to 0$, i.e.

* Collinear and/or soft regions do not in fact make important contribution to $D=4-2\epsilon$ but $\epsilon<0$ now. Then R. To see this, make integrals finite using dimensional regularization, with

$$\sigma^{q\bar{q}g} = 2\sigma_0 \frac{\alpha_{\rm S}}{\pi} H(\epsilon) \int dx_1 dx_2 \frac{(1-\epsilon)(x_1^2+x_2^2) + 2\epsilon(1-x_3)}{(1-x_3)^{\epsilon}[(1-x_1)(1-x_2)]^{1+\epsilon}}$$

where
$$H(\epsilon) = \frac{3(1-\epsilon)(4\pi)^{2\epsilon}}{(3-2\epsilon)\Gamma(2-2\epsilon)} = 1 + \mathcal{O}(\epsilon)$$
.

Hence

$$\sigma^{qar{q}g} \ = \ 2\sigma_0rac{lpha_{
m S}}{\pi}\ H(\epsilon)\ \left[rac{2}{\epsilon^2} + rac{3}{\epsilon} + rac{19}{2} - \pi^2 + \mathcal{O}(\epsilon)
ight] \ .$$

- * Soft and collinear singularities are regulated, appearing instead as poles at
- Virtual gluon contributions (a): using dimensional regularization again

$$\sigma^{q \bar{q}} = 3\sigma_0 \left\{ 1 + rac{2lpha_{\mathrm{S}}}{3\pi} H(\epsilon) \left[-rac{2}{\epsilon^2} - rac{3}{\epsilon} - 8 + \pi^2 + \mathcal{O}(\epsilon) \right]
ight\} .$$

Adding real and virtual contributions, poles cancel and result is finite as $\epsilon \to 0$:

$$R = 3\sum_{q} Q_q^2 \left\{ 1 + \frac{\alpha_S}{\pi} + \mathcal{O}(\alpha_S^2) \right\}.$$

Thus R is an infrared safe quantity.

Coupling α_s evaluated at renormalization scale μ . UV divergences in R cancel divergences make coefficients renormalization scheme dependent: to $\mathcal{O}(\alpha_s)$, so coefficient of α_s independent of μ . At $\mathcal{O}(\alpha_s^2)$ and higher, UV

$$R = 3 K_{QCD} \sum_q Q_q^2 ,$$

$$K_{QCD} = 1 + \frac{\alpha_{\mathrm{S}}(\mu^2)}{\pi} + \sum_{n \geq 2} C_n \left(\frac{s}{\mu^2}\right) \left(\frac{\alpha_{\mathrm{S}}(\mu^2)}{\pi}\right)^n$$

In $\overline{\text{MS}}$ scheme with scale $\mu = \sqrt{s}$,

$$\mathcal{C}_2(1) = \frac{365}{24} - 11\zeta(3) - [11 - 8\zeta(3)] \frac{N_f}{12}$$

 $\simeq 1.986 - 0.115N_f$

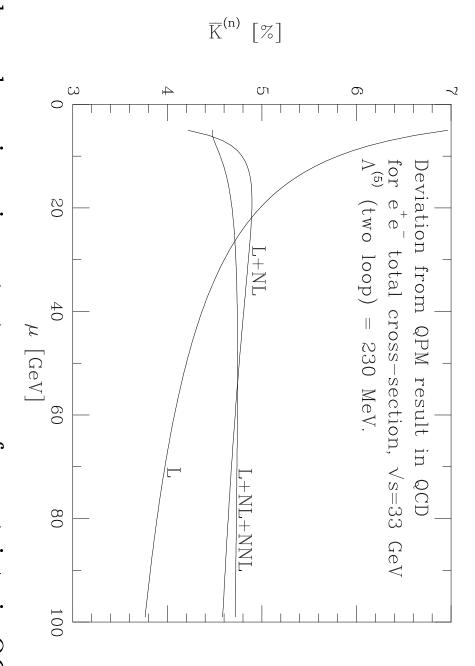
Coefficient C_3 is also known.

Scale dependence of C_2 , C_3 ... fixed by requirement that, order-by-order, series should be independent of μ . For example

$$C_2\left(\frac{s}{\mu^2}\right) = C_2(1) - \frac{\beta_0}{4}\log\frac{s}{\mu^2}$$

where $\beta_0 = 4\pi b = 11 - 2N_f/3$.

Scale and scheme dependence only cancels completely when series is computed terms are added, the more stable is prediction with respect to changes in μ . to all orders. Scale change at $\mathcal{O}(\alpha_s^n)$ induces changes at $\mathcal{O}(\alpha_s^{n+1})$. The more



substitute for a full higher-order calculation. predictions. One can vary scale over some 'physically reasonable' range, e.g. Residual scale dependence is an important source of uncertainty in QCD $\sqrt{s}/2 < \mu < 2\sqrt{s}$, to try to quantify this uncertainty. but there is no real

Shape distributions

- Shape variables measure some aspect of shape of hadronic final state, e.g. whether it is pencil-like, planar, spherical etc.
- For $d\sigma/dX$ to be calculable in PT, shape variable X should be infrared safe, i.e. goes to zero invariant under $p_i o p_j + p_k$ whenever p_j and p_k are parallel or one of them insensitive to emission of soft or collinear particles. In particular, X must be
- Examples are Thrust and C-parameter:

$$T = \max rac{\sum_{i} |oldsymbol{p}_{i} \cdot oldsymbol{n}|}{\sum_{i} |oldsymbol{p}_{i}|}$$
 $C = rac{3}{2} rac{\sum_{i,j} |oldsymbol{p}_{i}| |oldsymbol{p}_{j}| \sin^{2} heta_{ij}}{(\sum_{i} |oldsymbol{p}_{i}|)^{2}}$

After maximization, unit vector \boldsymbol{n} defines thrust axis.

In Born approximation final state is $q\bar{q}$ and 1-T=C=0. Non-zero $x_i = 2E_i/\sqrt{s}$: contribution at $\mathcal{O}(\alpha_s)$ comes from $e^+e^- \to q\bar{q}g$. Recall distribution of

$$\frac{1}{\sigma} \frac{d^2 \sigma}{dx_1 dx_2} = C_F \frac{\alpha_S}{2\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}.$$

in (x_1, x_2) -plane. constraint $\delta(X - f_X(x_1, x_2, x_3 = 2 - x_1 - x_2))$, i.e. along contour of constant X Distribution of shape variable X is obtained by integrating over x_1 and x_2 with

For thrust, $f_T = \max\{x_1, x_2, x_3\}$ and we find

$$rac{1}{\sigma} rac{d\sigma}{dT} = C_F rac{lpha_{
m S}}{2\pi} \left[rac{2(3T^2 - 3T + 2)}{T(1 - T)} \log \left(rac{2T - 1}{1 - T}
ight) - rac{3(3T - 2)(2 - T)}{(1 - T)}
ight].$$

region for two- and three-parton final states total cross section is obtained after integrating over $\frac{2}{3} \leq T \leq 1$, the physical gluon contribution is negative and proportional to $\delta(1-T)$, such that correct This diverges as $T \to 1$, due to soft and collinear gluon singularities. Virtual

 $\alpha_{\rm S}^n \log^{2n-1}(1-T)/(1-T)$ appear in $\mathcal{O}(\alpha_{\rm S}^n)$. overall rate. Care must be taken near T=1 where (a) hadronization effects $\mathcal{O}(\alpha_s^2)$ corrections also known. Comparisons with data provide test of QCD become large, and (b) large higher-order terms of the form matrix elements, through shape of distribution, and measurement of α_s , from

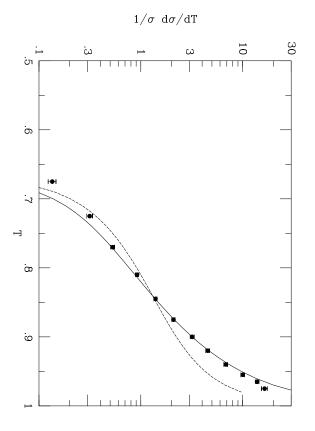


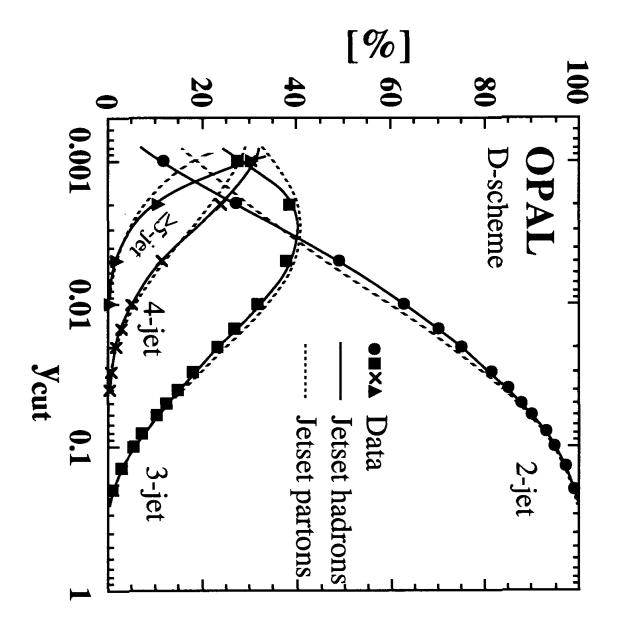
Figure shows thrust distribution measured at LEP1 (DELPHI data) compared with theory for vector gluon (solid) or scalar gluon (dashed).

Jet fractions

- To define fraction f_n of n-jet final states (n = 2, 3, ...), must specify jet
- Most common is k_T or Durham algorithm:
- Define jet resolution y_{cut} (dimensionless).
- \diamond For each pair of final-state momenta p_i, p_j define

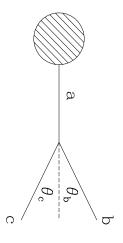
$$y_{ij} = 2\min\{E_i^2, E_j^2\}(1 - \cos\theta_{ij})/s$$

- \bullet If $y_{IJ} = \min\{y_{ij}\} < y_{\text{cut}}$, combine I, J into one object K with $p_K = p_I + p_J$.
- * Repeat until $y_{IJ} > y_{\text{cut}}$. Then remaining objects are jets.



Parton branching

Leading soft and collinear enhanced terms in QCD matrix elements (and corresponding virtual corrections) can be identified and summed to all orders. Consider splitting of outgoing parton a into b+c.



• Can assume p_b^2 , $p_c^2 \ll p_a^2 \equiv t$. Opening angle is $\theta = \theta_a + \theta_b$, energy fraction is

$$z = E_b/E_a = 1 - E_c/E_a$$
.

For small angles

$$t = 2E_b E_c (1 - \cos \theta) = z(1 - z) E_a^2 \theta^2$$
,
 $\theta = \frac{1}{E_a} \sqrt{\frac{t}{z(1 - z)}} = \frac{\theta_b}{1 - z} = \frac{\theta_c}{z}$.

- Consider first $g \to gg$ branching:
- * Amplitude has triple-gluon vertex factor

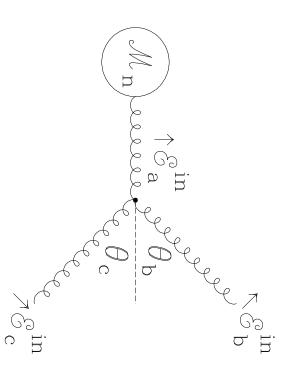
$$gf^{ABC}\epsilon_a^{lpha}\epsilon_b^{eta}\epsilon_c^{\gamma}[g_{lphaeta}(p_a-p_b)_{\gamma}+g_{eta\gamma}(p_b-p_c)_{lpha}+g_{\gammalpha}(p_c-p_a)_{eta}]$$

so $p_a = -p_b - p_c$. Using this and $\epsilon_i \cdot p_i = 0$, vertex factor becomes ϵ_i^{μ} is polarization vector for gluon i. All momenta defined as outgoing here,

$$-2gf^{ABC}[(\epsilon_a \cdot \epsilon_b)(\epsilon_c \cdot p_b) - (\epsilon_b \cdot \epsilon_c)(\epsilon_a \cdot p_b) - (\epsilon_c \cdot \epsilon_a)(\epsilon_b \cdot p_c)].$$

Resolve polarization vectors into ϵ_i^{in} in plane of branching and ϵ_i^{out} normal to plane, so that

$$\epsilon_i^{\mathrm{in}} \cdot \epsilon_j^{\mathrm{in}} = \epsilon_i^{\mathrm{out}} \cdot \epsilon_j^{\mathrm{out}} = -1$$
 $\epsilon_i^{\mathrm{in}} \cdot \epsilon_j^{\mathrm{out}} = \epsilon_i^{\mathrm{out}} \cdot p_j = 0$.



 \diamond For small θ , neglecting terms of order θ^2 , we have

$$\epsilon_a^{\text{in}} \cdot p_b = -E_b \theta_b = -z(1-z)E_a \theta
\epsilon_b^{\text{in}} \cdot p_c = +E_c \theta = (1-z)E_a \theta
\epsilon_c^{\text{in}} \cdot p_b = -E_b \theta = -zE_a \theta .$$

- \diamond Vertex factor proportional to θ , together with propagator factor of $1/t \propto 1/\theta^2$, gives $1/\theta$ collinear singularity in amplitude
- * (n+1)-parton matrix element squared (in small-angle region) is given in

terms of that for n partons:

$$|\mathcal{M}_{n+1}|^2 \sim \frac{4g^2}{t} C_A F(z; \epsilon_a, \epsilon_b, \epsilon_c) |\mathcal{M}_n|^2$$

given below where colour factor $C_A=3$ comes from $f^{ABC}f^{ABC}$ and functions F are

z/(1-z)	in	out	out	
(1-z)/z	out	in	out	
z(1-z)	out	out	in	
(1-z)/z + z/(1-z) + z(1-z)	in	in	in	
$F(z;\epsilon_a,\epsilon_b,\epsilon_c)$	ϵ_c	ϵ_b	ϵ_a	

Sum/averaging over polarizations gives

$$C_A \left\langle F \right\rangle \equiv \hat{P}_{gg}(z) = C_A \left[\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right] \ .$$

This is (unregularized) gluon splitting function.

 \diamond Enhancements at $z \to 0$ (b soft) and $z \to 1$ (c soft) due to soft gluon polarized in plane of branching.

 \diamond Correlation between polarization and plane of branching (angle ϕ):

$$F_{\phi} \propto \sum_{\epsilon_{b,c}} |\cos \phi \mathcal{M}(\epsilon_a^{\text{in}}, \epsilon_b, \epsilon_c) + \sin \phi \mathcal{M}(\epsilon_a^{\text{out}}, \epsilon_b, \epsilon_c)|^2$$
$$\propto \frac{1-z}{z} + \frac{z}{1-z} + z(1-z) + z(1-z)\cos 2\phi.$$

Hence branching in plane of gluon polarization preferred

- Consider next $g \rightarrow q\bar{q}$ branching:
- Vertex factor is

$$-ig\bar{u}^b\gamma_\mu\epsilon^\mu_av^c$$

where u^b and v^c are quark and antiquark spinors.

* Spin-averaged splitting function is

$$T_R \langle F \rangle \equiv \hat{P}_{qg}(z) = T_R [z^2 + (1-z)^2].$$

No soft $(z \to 0 \text{ or } 1)$ singularities since these are associated only with gluon

* Vector quark-gluon coupling implies (for $m_q \simeq 0$) q and \bar{q} helicities always opposite (helicity conservation).

Correlation between gluon polarization and plane of branching:

$$F_{\phi} = z^2 + (1-z)^2 - 2z(1-z)\cos 2\phi$$

i.e. strong preference for splitting perpendicular to polarization.

- Branching $q \rightarrow qg$:
- Spin-averaged splitting function is

$$C_F \langle F \rangle \equiv \hat{P}_{qq}(z) = C_F \frac{1+z^2}{1-z}$$
.

- Helicity conservation ensures that quark does not change helicity in branching.
- * Gluon polarized in plane of branching preferred, polarization angular correlation being

$$F_{\phi} = \frac{1+z^2}{1-z} + \frac{2z}{1-z}\cos 2\phi \ .$$

Phase space

Phase space factors before and after branching are related by

$$d\Phi_{n+1} = d\Phi_n \frac{1}{4(2\pi)^3} dt \, dz \, d\phi .$$

Hence cross sections before and after branching are related by

$$d\sigma_{n+1} = d\sigma_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} CF$$

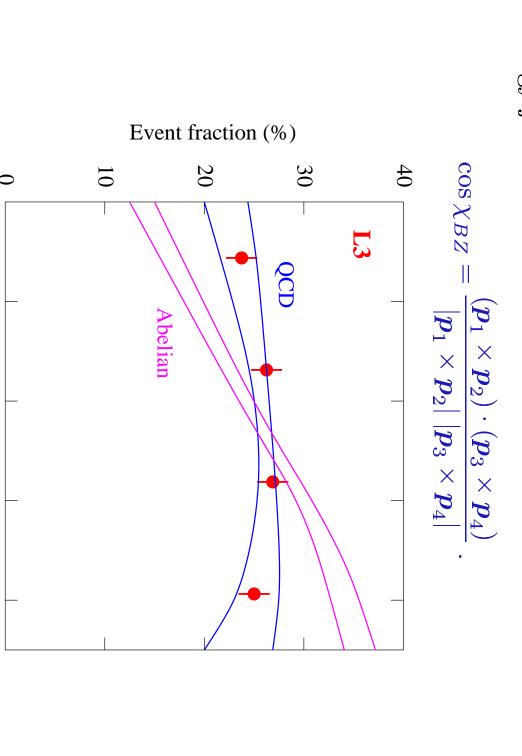
introduced earlier. Integrating over azimuthal angle gives where C and F are colour factor and polarization-dependent z-distribution

$$d\sigma_{n+1} = d\sigma_n \frac{dt}{t} dz \frac{\alpha_s}{2\pi} \hat{P}_{ba}(z)$$
.

where $P_{ba}(z)$ is $a \to b$ splitting function.

4-jet angular distribution

jets. Bengtsson-Zerwas angle χ_{BZ} is angle between the planes of two lowest and Angular correlations are illustrated by the angular distribution in $e^+e^- \rightarrow 4$ two highest energy jets:



 0^0

 20^{0}

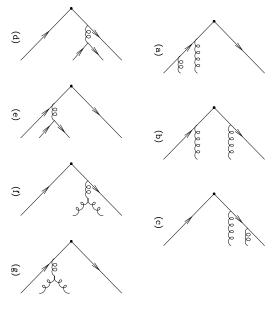
 40^{0}

 60°

 80^{0}

 $\chi_{_{
m BZ}}$

Lowest-order diagrams for 4-jet production shown below. Two hardest jets tend to follow directions of primary $q\bar{q}$.



- * "Double bremsstrahlung" diagrams give negligible correlations.
- $g \rightarrow q\bar{q}$ give strong anti-correlation ("Abelian" curve), because gluon is polarized in plane of primary jets and prefers to split \perp^{r} to polarization.
- $g \rightarrow gg$ occurs more often parallel to polarization. Although its correlation is colour factor and soft gluon enhancements much weaker than in $g \to q\bar{q}$, $g \to gg$ is dominant in QCD due to larger
- * Thus B-Z angular distribution is flatter than in an Abelian theory.

Summary of Lecture 2

- e^+e^- hadronic total cross section, event shapes and jet fractions are infrared safe quantities which can be predicted using QCD perturbation theory
- Parton branching approximation describes collinear-enhanced contribution to multi-parton cross sections in terms of splitting functions $P_{ij}(z)$.
- $e^+e^- \rightarrow 4$ -jet distributions show angular correlations due to spin of the gluon.