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Lecture 2: ete~ & parton branching
e e¢Te~ annihilation
[] Total cross section

[] Shape distributions

[1 Jet fractions

e Parton branching
[] Kinematics
[1 Splitting functions
[1 Phase space
[] 4-jet angular distribution



et e annihilation cross section

e ete” — utpu~ is a fundamental electroweak processes. Same type of process,
etTe~ — qq, will produce hadrons. Cross sections are roughly proportional.
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e Since formation of hadrons is non-perturbative, how can PT give hadronic cross
section? This can be understood by visualizing event in space-time:

[J e and e~ collide to form v or Z° with virtual mass Q = /s. This fluctuates
into qq, qqg,. .., occupy space-time volume ~ 1/Q). At large @), rate for this
short-distance process given by PT.

[ Subsequently, at much later time ~ 1/A, produced quarks and gluons form
hadrons. This modifies outgoing state, but occurs too late to change original

probability for event to happen.

e Well below Z°, process eTe™ — ff is purely electromagnetic, with lowest-order

(Born) cross section (neglecting quark masses)
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Thus (3 = N = number of possible ¢qq colours)

R— o(ete” — hadrons) 2, o(ete™ — qq) B wMQM
~ oleter —»ptpm)  oletem o ptpm) T4

e On Z° pole, /s = Mz, neglecting v/Z interference
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where k = V2Gp M2 /4ma = 1/sin?(20y) ~ 1.5. Hence

R — ['(Z — hadrons) 2_,1'(Z —qq) 3>, (a5 +vg)
YT TZ o utpt)  T(Z = ptpo) az + v

e Measured cross section is about 5% higher than og, due to QCD correc-

tions. For massless quarks, corrections to R and Ry are equal. To O(ag) we have:
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e Real emission diagrams (b): (b)

[1 Write 3-body phase-space integration as
d®s; = [...|dadf dy dz, dzs |

a, 3,7 are Euler angles of 3-parton plane,
x1 = 2p1- q/q*> = 2E4/+/s,
To = 2p2 - q/q° = 2Ez/+/s.

[1 Applying Feynman rules and integrating over Euler angles:

B 72 + 12
199 = 300Cp— | dx1d L2 .
7 OO For | YA T (4 = ag)



Integration region: 0 < z1,x9,x3 < 1 where
r3 =2k-q/q* =2E,/\/s =2 — x1 — x3.
Integral divergent at z1 2 = 1:

H|HH =
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Divergences: collinear when 6,4, — 0 or 04, — 0; soft when E, — 0, i.e.
x3 — 0. Singularities are not physical — simply indicate breakdown of PT
when energies and/or invariant masses approach QCD scale A.

Collinear and/or soft regions do not in fact make important contribution to
R. To see this, make integrals finite using dimensional regularization, with

D =4 — 2¢ but ¢ < 0 now. Then

(1 —€)(z9 + z3) + 2¢(1 — z3)
(1 —23)e[(1 — z1)(1 — z2)|" e
3(1 — €)(4m)?e

where H(e) = 3 20T(2 - 20 =1+ Of(e) .
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[1 Soft and collinear singularities are regulated, appearing instead as poles at
D = 4.

e Virtual gluon contributions (a): using dimensional regularization again

0?1 = 3oy ﬁHl_.me H(e) ~IW|mlm+ﬁm+GAmv~W :
3T
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e Adding real and virtual contributions, poles cancel and result is finite as € — 0:
Q
R =33 @2 T 2 GEWL |
q

Thus R is an infrared safe quantity.

e Coupling ag evaluated at renormalization scale . UV divergences in R cancel
to O(ag), so coefficient of oy independent of p. At O(a?) and higher, UV

divergences make coefficients renormalization scheme dependent:

R = 3Kqcp Y Q,
q



Kgoep = H+%+MQ:AWV A%v:

e In MS scheme with scale p = 4/,

365 Ny

S 11C(3) - 11 - 8((3)] 7

~ 1.986 — 0.115N;

C2(1)

Coefficient Cj5 is also known.

e Scale dependence of Cy, C5 ... fixed by requirement that, order-by-order, series

should be independent of u. For example
S Bo S
Cy Amv = (1) — "y log 2
where By = 4nb =11 — 2Ny/3.
e Scale and scheme dependence only cancels completely when series is computed

to all orders. Scale change at O(a?) induces changes at O(a?*1). The more

terms are added, the more stable is prediction with respect to changes in u.
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e Residual scale dependence is an important source of uncertainty in QCD
predictions. One can vary scale over some ‘physically reasonable’ range, e.g.
V8/2 < pu < 24/s, to try to quantify this uncertainty. but there is no real
substitute for a full higher-order calculation.



Shape distributions

e Shape variables measure some aspect of shape of hadronic final state, e.g.

whether it is pencil-like, planar, spherical etc.

e For do/dX to be calculable in PT, shape variable X should be infrared safe, i.e.
insensitive to emission of soft or collinear particles. In particular, X must be
invariant under p; — p,; + p;, whenever p, and p;, are parallel or one of them

goes to zero.

e Examples are Thrust and C-parameter:
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After maximization, unit vector n defines thrust axis.

T = max

Q”



e In Born approximation final state is gg and 1 — T = C' = 0. Non-zero
contribution at O(ag) comes from ete™ — ¢gg. Recall distribution of
r, — Mm_s\/\w
1 d?o Ol T? + T3
——— = (CF :
o &&H&&w 2T AH — &HVAH — &wv

Distribution of shape variable X is obtained by integrating over x; and zo with

constraint §(X — fx(x1,T2,23 =2 —x1 — x2)), i.e. along contour of constant X

in (x1,x2)-plane.

e For thrust, f;r = max{xy,x2,x3} and we find

car ~ °F 1T

1 do a: (20372 —8T+2) (2T -1
O
o dT o | T(A-T) °°

3(3T — 2)(2 — T)
(1-T)

This diverges as T' — 1, due to soft and collinear gluon singularities. Virtual
gluon contribution is negative and proportional to d(1 — 7T'), such that correct
total cross section is obtained after integrating over 2 < T <1, the physical
region for two- and three-parton final states.



o O(a?) corrections also known. Comparisons with data provide test of QCD
matrix elements, through shape of distribution, and measurement of ag, from
overall rate. Care must be taken near T'= 1 where (a) hadronization effects

become large, and (b) large higher-order terms of the form
o log®* (1 —T)/(1 — T) appear in O(a?).
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e Figure shows thrust distribution measured at LEP1 (DELPHI data) compared

with theory for vector gluon (solid) or scalar gluon (dashed).



Jet fractions

e To define fraction f, of n-jet final states (n = 2,3, ...), must specify jet
algorithm.

e Most common is k7 or Durham algorithm:
[J Define jet resolution yeut (dimensionless).

[ For each pair of final-state momenta p;, p; define

yi; = 2min{E}, E5}(1 — cosb;5)/s

1

O If yr; = min{y;; } < Yeut, combine I, J into one object K with px = pr + p;.

[1 Repeat until y;5 > ycut. Then remaining objects are jets.
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Parton branching

e Leading soft and collinear enhanced terms in QCD matrix elements (and
corresponding virtual corrections) can be identified and summed to all orders.
Consider splitting of outgoing parton a into b + c.

[J Can assume p?, p> < p2 = t. Opening angle is 6 = 6, + 0y, energy fraction is

:=FEy,/E,=1-E,/E, .

[1 For small angles

t = 2E,E.(1—cosf) =z(1—2)E6*,

1 t O 0.
% — — = —
E,\ z1—2) 1—2z =z




e Consider first ¢ — gg branching:

[ Amplitude has triple-gluon vertex factor

B

gf*PC e €l[gap(Pa — Pb)y + 98+ (Db — Pe)a + Gya (Pe — Pa) ]

I

e; 1s polarization vector for gluon . All momenta defined as outgoing here,

SO Po = —Pp — Pe- Using this and ¢; - p; = 0, vertex factor becomes

Iwb\f»mm.:ma ~€p)(€c - b) — (€ - €c)(€a - Do) — (€c - €a) (€ - Pc)] -

out

[ Resolve polarization vectors into €l in plane of branching and €?"* normal to

plane, so that

in in out out _
ms. : m.w. — m& * mb. — H_.
n ocﬁ ocd .

€ "€, = ¢ -pj = 0.



[] For small 0, neglecting terms of order 6%, we have

mws *Pp = |m@%@ — |NAH — Nvm@%
mws ‘pe = +EH =(1-2)E,0
mwnb Py = |mw_@% = |wa_9% .

[] Vertex factor proportional to 6, together with propagator factor of
1/t < 1/62, gives 1/0 collinear singularity in amplitude.

[0 (n + 1)-parton matrix element squared (in small-angle region) is given in



terms of that for n partons:

4g°
t

where colour factor C4 = 3 comes from fABC fABC and functions F are

given below

_.>\~3|_|H_M ~ Q\wm‘ANWmQum?mOV_.\/\ﬁS_M

€a € € F(z;€q,€p,€c)

in in in | (1—-2)/z4+2/(1—2)+2(1—-2)
in out out z2(1—2)

out in  out (1—2)/z

out out in z/(1—z)

[J Sum/averaging over polarizations gives

~ 1 —
Ca (F) = Pyy(z) = Ca | —— + 7~ +2(1-2)

This is (unregularized) gluon splitting function.

[1 Enhancements at z — 0 (b soft) and z — 1 (¢ soft) due to soft gluon

polarized in plane of branching.



[J Correlation between polarization and plane of branching (angle ¢):

Fy M_OOm@EAmwﬁm?mav+m5%.>\2mmcﬁm?mov_w
€b,c
1—-=2 z

1— 1— 20 .
X . ._.lel_.NA z2) + z(1 — z) cos 2¢

Hence branching in plane of gluon polarization preferred.

e (Consider next ¢ — ¢g branching:
[] Vertex factor is
I&mﬁftmm@o
where u® and v¢ are quark and antiquark spinors.

[] Spin-averaged splitting function is

Tr(F) = Py (2) =Tr[2* + (1 - 2)%].

No soft (z — 0 or 1) singularities since these are associated only with gluon
emission.

[l Vector quark-gluon coupling implies (for m, ~ 0) ¢ and ¢ helicities always
opposite (helicity conservation).



[] Correlation between gluon polarization and plane of branching:
Fy=2"4+(1—2)%—22(1 — 2) cos 2¢
i.e. strong preference for splitting perpendicular to polarization.

e DBranching ¢ — qg:

[1 Spin-averaged splitting function is

. 1+ 22
Cr (F) = Pyg(2) = Cr—

[1 Helicity conservation ensures that quark does not change helicity in
branching.

[1 Gluon polarized in plane of branching preferred, polarization angular

correlation being

1 + 22 2z
F, = 20 .
¢ lel_.HINOOm%




Phase space

e Phase space factors before and after branching are related by

1
APnt1 =d 4(27)3 2 dg

e Hence cross sections before and after branching are related by

dt ,_dg as

CF
t ““oron

where C' and F' are colour factor and polarization-dependent z-distribution

introduced earlier. Integrating over azimuthal angle gives

where Pyq(2) is a — b splitting function.



4-jet angular distribution

e Angular correlations are illustrated by the angular distribution in ete™ — 4
jets. Bengtsson-Zerwas angle xgz is angle between the planes of two lowest and

two highest energy jets:

(P1 X P2) - (P3 X Dy)
[Py X Pa| [P3 X Py
40 | | |

COSXBz =

Event fraction (%)
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e Lowest-order diagrams for 4-jet production shown below. Two hardest jets tend
to follow directions of primary qgq.

(a) (b) (c)
(d) (e) () (g)

[1 “Double bremsstrahlung” diagrams give negligible correlations.

[J g — qq give strong anti-correlation (“Abelian” curve), because gluon is
polarized in plane of primary jets and prefers to split L* to polarization.

[ g — gg occurs more often parallel to polarization. Although its correlation is
much weaker than in ¢ — qgq, g — gg is dominant in QCD due to larger
colour factor and soft gluon enhancements.

[] Thus B-Z angular distribution is flatter than in an Abelian theory.



Summary of Lecture 2

eTe™ hadronic total cross section, event shapes and jet fractions are infrared
safe quantities which can be predicted using QCD perturbation theory.

Parton branching approximation describes collinear-enhanced contribution to

multi-parton cross sections in terms of splitting functions P;;(2).

ete” — 4-jet distributions show angular correlations due to spin of the gluon.



