
The Mediator: What Next?

Talk by: Andy Cooke
Collaborators: Alasdair Gray, Lisha Ma,

and Werner Nutt
Heriot-Watt University

Overview
Next Steps:

All Insertables Should Stream
Choosing Query Plans.

Future Steps:
Republisher Hierarchies?
Support More Queries?

All Insertables Should Stream
If a Producer publishes to a global table, it should
be able to forward (stream) its table updates.

Archivers will be able to collect all updates to
a table, not just some
Consumers can always get full answers from:

Archivers, as they are always complete
Complete Producers (no overlapping views)

Simpler code, clearer semantics!

The Current Mediator

Primary Producers

Latest Archiver

Latest Consumer ?

With a New Mediator

Primary Producers

Latest Archiver

Latest Consumer

Benefits to Users
Consistent Answers, irrespective of where you
are in the world!

Today, two primary LPs may offer different
answers
…but a new mediator could prevent this

Improved Security
Today, a “rogue” LP could be registered close to
a Resource Broker, bringing down the Grid!
… but a new mediator would ignore it

Benefits to Users (cont.)

Full, Correct Answers
As archivers will “fan-in” from all Insertables
Today, wrong answers may be returned to
queries with aggregation!

We want to begin as soon as possible, in a
separate CVS Branch

Discussion
We would like to add this fix to R-GMA before the

end of the current project.
It’s needed before the mediator can be enhanced.
Of course stability is the priority.

However,
What other fixes are needed?
How should these be prioritized?
How do we organise their deployment?
How do we minimise risk to stability?

Overview
Next Steps:

All Insertables Should Stream
Choosing Query Plans

Future Steps:
Republisher Hierarchies?
Support More Queries?

What is a Query Plan?
Query Plans are sent from the Registry to the

Consumer. These should contain:

Publishers that should be contacted, and
Quality Description, e.g. COMPLETE flag

e.g. a one-time query with 3 plans (Archivers), two
of which are complete.

e.g. a continuous query with one plan, involving 5
producers.

Which Query Plan should be used?
If a Consumer Agent has a choice of Query

Plans, which should it choose to execute?

The plan that returns the fastest answer?
The plan that returns the fastest,

most complete answer?
The plan offering the freshest tuples?

… or should users have a say?

Which Query Plan is fastest?
Fastest Query Plan could be found by:

Measuring the time it takes for a getStatus()
message to return.
This measurement could be made
for every new plan:

When the Consumer registers, and
When Consumer is notified of new Producers

Monitoring Completeness
Registry maintains completeness flags

for all Publishers
Registry informs Consumers whenever a
Publisher’s status changes
Registry monitors status of producers:

Primary Producers are complete if there are
no overlapping producers

Archivers monitor their own status
An Archiver is complete when it has fully started
It tells the registry when this happens.

Choosing Query Plans
If there are several complete plans, which one is
the best?
If all possible plans are incomplete, which one is
the best?
Can it be that an incomplete plan is better than
a complete one?

Incomplete plans could be ranked by counting
primary keys

Easy for latest archivers
More difficult for history archivers!

Choosing Query Plans
We propose an algorithm that involves:

Archivers tell registry when they’ve fully started
(i.e. have contacted all SPs in its plan).
Consumers maintaining a “league table”,
ranking plans according to:

Their “closeness”
Their “completeness”

Primary keys can be counted to decide between
two incomplete plans

Overview
Next Steps:

All Insertables Should Stream
Choosing Query Plans

Future Steps:
Republisher Hierarchies?
Support More Queries?

Republisher Hierarchies
Republisher Hierarchies may help to:

Reduce network traffic
Improve the max republishing rate

less threads!
Share load across publishers

as more choice for consumers.

One layer of archivers

Two layers of archivers

Less traffic, less load?

Would Republisher Hierarchies help?
We need measurements:

How many Cs can a P serve?
How many Ps can a C stream from?
Max insert rate into a P?
Max republishing rate?
where is the bottle neck?

Would the schema support hierarchies?
Would the registry support hierarchies?

Overview
Next Steps:

All Insertables Should Stream
Choosing Query Plans

Future Steps:
Republisher Hierarchies?
Support More Queries?

Supporting more Queries
Improve language for continuous queries?

Queries with OR
Queries with aggregation, e.g.

“average over the last minute”
Support more one-time queries?

When Archivers have partial views
When no Archivers and need to merge?

