
The Mediator: What Next?

Talk by: Andy Cooke
Collaborators: Alasdair Gray, Lisha Ma,

and Werner Nutt
Heriot-Watt University

Overview

� Next Steps:
� All Insertables Should Stream

� Choosing Query Plans.

� Future Steps:
� Republisher Hierarchies?

� Support More Queries?

All Insertables Should Stream
If a Producer publishes to a global table, it should
be able to forward (stream) its table updates.

�Archivers will be able to collect all updates to
a table, not just some

�Consumers can always get full answers from:
�Archivers, as they are always complete
�Complete Producers (no overlapping views)

Simpler code, clearer semantics!

The Current Mediator

Primary Producers

Latest Archiver

Latest Consumer ?

With a New Mediator

Primary Producers

Latest Archiver

Latest Consumer

Benefits to Users
�Consistent Answers, irrespective of where you

are in the world!
�Today, two primary LPs may offer different

answers
�…but a new mediator could prevent this

� Improved Security
�Today, a “rogue” LP could be registered close to

a Resource Broker, bringing down the Grid!
�… but a new mediator would ignore it

Benefits to Users (cont.)

�Full, Correct Answers
�As archivers will “fan-in” from all Insertables
�Today, wrong answers may be returned to

queries with aggregation!

We want to begin as soon as possible, in a
separate CVS Branch

Discussion
We would like to add this fix to R-GMA before the

end of the current project.
� It’s needed before the mediator can be enhanced.

�Of course stability is the priority.

However,
�What other fixes are needed?
�How should these be prioritized?

�How do we organise their deployment?
�How do we minimise risk to stability?

Overview

� Next Steps:
� All Insertables Should Stream

� Choosing Query Plans

� Future Steps:
� Republisher Hierarchies?

� Support More Queries?

What is a Query Plan?

Query Plans are sent from the Registry to the
Consumer. These should contain:

�Publishers that should be contacted, and
�Quality Description, e.g. COMPLETE flag

e.g. a one-time query with 3 plans (Archivers), two
of which are complete.

e.g. a continuous query with one plan, involving 5
producers.

Which Query Plan should be used?

If a Consumer Agent has a choice of Query
Plans, which should it choose to execute?

� The plan that returns the fastest answer?
� The plan that returns the fastest,

most complete answer?
�The plan offering the freshest tuples?

… or should users have a say?

Which Query Plan is fastest?
Fastest Query Plan could be found by:

� Measuring the time it takes for a getStatus()
message to return.

� This measurement could be made
for every new plan:
�When the Consumer registers, and
�When Consumer is notified of new Producers

Monitoring Completeness

�Registry maintains completeness flags
for all Publishers

�Registry informs Consumers whenever a
Publisher’s status changes

�Registry monitors status of producers:
�Primary Producers are complete if there are

no overlapping producers

�Archivers monitor their own status
�An Archiver is complete when it has fully started
� It tells the registry when this happens.

Choosing Query Plans
� If there are several complete plans, which one is

the best?
� If all possible plans are incomplete, which one is

the best?
�Can it be that an incomplete plan is better than

a complete one?

Incomplete plans could be ranked by counting
primary keys
� Easy for latest archivers
� More difficult for history archivers!

Choosing Query Plans
We propose an algorithm that involves:
� Archivers tell registry when they’ve fully started

(i.e. have contacted all SPs in its plan).

� Consumers maintaining a “league table”,
ranking plans according to:
�Their “closeness”
�Their “completeness”

�Primary keys can be counted to decide between
two incomplete plans

Overview

� Next Steps:
� All Insertables Should Stream

� Choosing Query Plans

� Future Steps:
� Republisher Hierarchies?

� Support More Queries?

Republisher Hierarchies
Republisher Hierarchies may help to:

�Reduce network traffic
�Improve the max republishing rate

�less threads!

�Share load across publishers
�as more choice for consumers.

One layer of archivers

Two layers of archivers

Less traffic, less load?

Would Republisher Hierarchies help?

� We need measurements:
� How many Cs can a P serve?
� How many Ps can a C stream from?
� Max insert rate into a P?
� Max republishing rate?
� where is the bottle neck?

� Would the schema support hierarchies?
� Would the registry support hierarchies?

Overview

� Next Steps:
� All Insertables Should Stream

� Choosing Query Plans

� Future Steps:
� Republisher Hierarchies?

� Support More Queries?

Supporting more Queries
Improve language for continuous queries?
� Queries with OR
� Queries with aggregation, e.g.

“average over the last minute”

Support more one-time queries?
� When Archivers have partial views

� When no Archivers and need to merge?

