
Non-Silicon Solid State Detectors

Harris Kagan
Ohio State University

42nd INFN Eloisatron Workshop
Oct. 1, 2003 - Erice, Italy

Outline of the Talk

• Introduction

• Status of Diamond Research

• Status of Silicon Carbide Research

• Radiation Monitoring - a new application

• The Future

• Summary

42nd INFN Eloisatron Workshop

Oct. 1, 2003 - Erice, Italy

Non-Silicon Solid State Detectors (page 1) Harris Kagan

Ohio State University



Introduction

Motivation: Tracking Devices Close to Interaction Region of Experiments

LHC + SLHC Issues:
→ Inner tracking layers must survive!

→ Inner tracking layers must provide high precision tracking to tag b, t, Higgs, . . .

→ Annual replacement of inner layers perhaps?

Material Properties:
• Radiation hardness

• Low dielectric constant → low capacitance

• Low leakage current → low readout noise

• Room temperature operation, Fast signal collection time → no cooling

Material Presented Here:
• Chemical Vapor Deposition (CVD) Diamond

• Silicon Carbide

Reference → http://rd42.web.cern.ch/RD42
→ http://rd50.web.cern.ch/RD50
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Introduction

Comparison of Various Materials

Property Diamond 4H-SiC Si

Band Gap [eV] 5.5 3.3 1.12
Breakdown field [V/cm] 107 4×106 3×105

Resistivity [Ω-cm] > 1011 1011 2.3×105

Intrinsic Carrier Density [cm−3] < 103 1.5×1010

Electron Mobility [cm2V−1s−1] 1800 800 1350
Hole Mobility [cm2V−1s−1] 1200 115 480
Saturation Velocity [km/s] 220 200 82

Mass Density [g cm−3] 3.52 3.21 2.33
Atomic Charge 6 14/6 14
Dielectric Constant 5.7 9.7 11.9
Displacement Energy [eV/atom] 43 25 13-20

Energy to create e-h pair [eV] 13 8.4 3.6
Radiation Length [cm] 12.2 8.7 9.4
Spec. Ionization Loss [MeV/cm] 4.69 4.28 3.21
Ave. Signal Created/100 µm [e] 3600 5100 8900
Ave. Signal Created/0.1% X0 [e] 4400 4400 8400
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Diamond

Characterization of Diamond:

Signal formation

e-h Creation

Charged Particle

Electrodes

Diamond

Vbias

Amplifier

• Q=d
t
Q0 where d = collection distance = distance e-h pair move apart

• d=(µeτe + µhτh)E

• d=µEτ

with µ = µe + µh

and τ = µeτe+µhτh

µe+µh

42nd INFN Eloisatron Workshop

Oct. 1, 2003 - Erice, Italy

Non-Silicon Solid State Detectors (page 4) Harris Kagan

Ohio State University



Diamond

Diamond Properties:

Signal formation
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• Metalization was typically Cr/Au or Ti/Au or Ti/W → new

• Polycrystalline CVD diamond typically “pumps” by a factor of 1.5-1.8

• Usually operate at 1V/µm → drift velocity saturated

• Test Procedure: dot → strip → pixel
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Diamond

Growth side of a recent polycrystalline CVD (pCVD) diamond.

(Courtesy of Element Six)
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Diamond

In 2000 RD42 entered into a Research Program with Element Six to increase
the charge collected from pCVD diamond.

Latest Diamonds Measured with a 90Sr Source:

• System Gain = 124 e/mV
• QMP = 62mV = 7600e
• Mean Charge = 79mV = 9800e

• Source data well separated from 0
• Collection Distance now 275µm
• Most Probable Charge now ≈ 8000e
• 99% of PH distribution now above
3000e

• FWHM/MP ≈ 0.95 — Si has ≈ 0.5
• This diamond available in large sizes

The Research program worked!
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Diamond

History of Diamond Progress

*

Charge Collection in DeBeers CVD Diamond
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Diamond

Recent pCVD diamond wafer ready for test:
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Diamond - Tracking Studies

CERN Testbeam Setup for Diamond Telescope:

4 diamond strips
in frame 1 in frame 2

3 diamond strips

plastic

V V

30 mm

scintillation
trigger

150 mm

V HV H H V H V V H H H VV H
direction of strips

H=horizontal

V=vertical

pion beam
100 GeV/c

  4 x Si4 x Si

CDS-88 CDS-90 UTS-23 CDS-82

P2P1P2

UTS-24CDS-83

P2P1 P2 P1

• 100 GeV/c pion/muon beam

• 7 planes of CVD diamond strip sensors each 2cm × 2cm

• 50µm pitch, no intermediate strips → new metalisation procedure

• 2 additional diamond strip sensors for test

• Several silicon sensors for cross checks

• Strip Electronics (2 µsec) → ENC ≈ 100e + 14e/pF
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Diamond - Tracking Studies

Photograph of Two Planes of the Telescope:
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Diamond - Tracking Studies

PH Distribution on each Strip

channel number [ ]
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Diamond, 2-Strip Non-Linear Eta Residuals


• Uniform signals on all strips → new metalisation

• Pedestal separated from “0” on all strips

• 99% of entries above 2000 e

• Mean signal charge ∼ 8640 e → new metalisation

• MP signal charge ∼ 6500 e
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Diamond - Tracking Studies

Residuals
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Diamond - Tracking Studies

Next advance → take advantage of charge sharing:

Use intermediate strips to force charge sharing.
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Diamond - Tracking Studies

Radiation Hard Diamond Tracking Modules:
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• Large (2cm × 4cm) Module constructed with new metalisation

• Fully radiation hard SCTA128 electronics → 25ns peaking time

• Tested in a 90Sr → ready for beam test and irradiation

• Charge distribution cleanly separated from the noise tail → S/N > 8/1

• Efficiency will be measured in test beams at 40 MHz clock rate
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Diamond Pixel Detectors

ATLAS FE/I Pixels (Al)

• Atlas pixel pitch 50µm × 400µm
• Over Metalisation: Al
• Lead-tin solder bumping at IZM in Berlin

CMS Pixels (Ti-W)

• CMS pixel pitch 125µm × 125µm
• Metalization: Ti/W
• Indium bumping at UC Davis

→ Bump bonding yield ≈ 100 % for both ATLAS and CMS devices

New radiation hard chips produced this year.

42nd INFN Eloisatron Workshop

Oct. 1, 2003 - Erice, Italy

Non-Silicon Solid State Detectors (page 16) Harris Kagan

Ohio State University



Diamond Pixel Detectors

Results from a CMS pixel detector

Efficiency Resolution

• Results with 200µm collection distance diamond

Efficiency ∼ 94%

Spatial resolution ∼ 31µm for 125µm pitch
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Diamond Pixel Detectors

Results from a CMS pixel detector

Efficiency vs Pixel

• Inefficient pixels due to bump bonding and/or electronics - shown in pulser tests

• Excellent correlation between beam telescope and pixel tracker data!
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Diamond Radiation Hardness Studies with Trackers

Proton Irradiation Studies with Trackers:

Signal to Noise

2 strip transparent signal to single strip noise [ ]
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• Dark current decreases with fluence
• S/N decreases at 2× 1015/cm2

• Resolution improves at 2× 1015/cm2
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Diamond Radiation Hardness Studies with Trackers

Pion Irradiation Studies with Trackers:

Signal to Noise

2-strip transparent signal to single strip noise [ ]
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• Dark current decreases with fluence

• 50% loss of S/N at 2.9× 1015/cm2

• Resolution improves 25% at 2.9× 1015/cm2
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Diamond Future: Single Crystal CVD Diamond

Could we make a CVD diamond with improved characteristics?

• Remove the grain boundaries, defects , etc.

• Lower operating voltage.

• Eliminate pumping.

This is single crystal CVD (scCVD) diamond: [Isberg et al., Science 297 (2002) 1670].

CD135 - Both Sides - Pumped (Sr-90 source)
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Single Crystal CVD Diamond

HV characteristics

E-Field (V/micron)
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High quality scCVD diamond collects all the charge at E=0.2V/µ!
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Single Crystal CVD Diamond

Pumping characteristics
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High quality scCVD diamond does not pump!
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Silicon Carbide

Structures in 4H-SiC:

The properties of silicon carbide are in some sense the geometric mean
between silicon and diamond. As a result one hopes to take advantage of the
strengths of both. Two types of SiC structures have been studied:

In Semi-Insulating material the charge collection depends on native defects;
Epitaxial material has low native defects but only exists in thin layers.
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Silicon Carbide

Characterization of SiC:

Source Setup
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Silicon Carbide

Charge Distributions from Semi-insulating 4H-SiC:

Semi-insulating SiC works but has problems with defects, full charge
collection and stability.
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Silicon Carbide

Charge Distributions from Epitaxial 4H-SiC:

Signal to Noise of 7:1 attained with Epitaxial SiC. Signal just separated from
the pedestal.
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Silicon Carbide

Charge Distributions from Epitaxial 4H-SiC:

Epitaxial SiC has been shown for thin layers to collect all the charge at
electric fields of ∼ 1.5V/µm.
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Radiation Monitoring - A New Application - BaBar, Belle, CMS

Motivation:

→ Radiation monitoring crucial for silicon operation/abort system

→ Abort beams on large current spikes

→ Measure calibrated daily and integrated dose

→ BaBar/Belle presently use silicon PIN diodes, leakage current increases 2nA/krad

→ After 100fb−1 signal≈10nA, noise≈ 1-2µA

→ Large effort to keep working, BaBar/Belle PIN diodes will not last past 2004-05
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Radiation Monitoring

The BaBar/Belle Diamond Radiation Monitor Prototypes:

• Package must be small to fit in allocated space

• Package must be robust

Schematic View

Diamond

Au Contact

In Solder
HV Insulation

Ground Braid
Kapton Insulation

Copper Shield
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Radiation Monitoring

The BaBar/Belle Diamond Radiation Monitor Prototypes:

Photo of Belle Prototype Device Photo of Packaged Belle Prototype
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Radiation Monitoring

The BaBar/Belle Diamond Radiation Monitor Prototypes:

Photo of Installed BaBar Device Photo of Installed Belle Device

BaBar device inside the silicon vertex detector.

Belle device just outside the silicon vertex detector.
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Radiation Monitoring

The CMS Diamond Radiation Monitor Program:

• Diamond activity has begun!

• Test beam emulating beam accident in Autumn 2003

• Possible location in the CMS detector:

Monitors

Simulation of a Beam Accident in CMS

42nd INFN Eloisatron Workshop

Oct. 1, 2003 - Erice, Italy

Non-Silicon Solid State Detectors (page 33) Harris Kagan

Ohio State University



Radiation Monitoring

Results on Calibration in BaBar:

• In BaBar during injection relative to silicon diodes: 5.9mrad/nC (Feb)

• In BaBar during injection relative to silicon diodes: 5.8mrad/nC (Apr)

• Correlation coefficient unchanged over several months
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Calibration repeatable but so far limited by systematics
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Radiation Monitoring

Data Taking in BaBar:
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Fast Abort Soft Abort

System operating for 4 months in BaBar and works well!
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Radiation Monitoring

Leakage Current in BaBar

• Diamonds have received 250kRad 60Co plus 250kRad while installed

• No observed change in leakage current (<0.1nA) or fluctuations (30pA)

• Data directly from BaBar SVTRAD system

• Electronic noise (≈ 0.5nA) substracted off
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Radiation Monitoring

Very Fast Time Scale (ns) in BaBar

• Use a fast amplifier to look at PIN-diode and diamond signals

• Trigger on the PIN-diode signal

• Look at fast spikes: red = diamond, black = PIN-diode

Diamond is fast enough for Fast Abort
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Radiation Monitoring

An attempt at final packaging

Ceramic Package
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The Future

• Diamond and silicon carbide have very promising futures

• Diamond work is being pursued by RD42 pCVD → scCVD

• SiC work is being pursued by RD50 epi layers → 100µm

• Present pCVD diamonds should surpass the performance of present silicon at around
1015p/cm2

• Semi-insulating SiC will require lots of engineering
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Summary

• Charge Collection in Diamond

270 µm collection distance diamond attained in pCVD research contract

MP signal ≈ 8000 e

99% of charge distribution above 3000 e

Attained S/N=60/1 with 2µs shaping time; 8/1 at 25ns

FWHM/MP ∼ 0.95 – Working with manufacturers to increase uniformity

This diamond process now in production reactors

Single crystal CVD diamond is here: >450 µm collection distance attained

MP signal ≈ 13000 e

99% of charge distribution above 10000 e

FWHM/MP ∼ 0.30

• Charge Collection in Silicon Carbide

40 µm collection distance epitaxial SiC attained

Full charge collection at E ∼ 1.5V/µm

Attained S/N of 7/1 with 2µs shaping time using a source

Wafer diameters up to 3 cm and thicknesses up to 100µm soon

Tracking devices now being fabricated
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Summary

• Radiation Hardness of Large Bandgap SemiConductors

Using trackers allows a correlation between S/N and Resolution

◦ Dark current decreases with fluence

◦ Some loss of S/N with fluence

◦ Resolution improves with fluence

Tests must be repeated with more trackers and latest pCVD and scCVD

diamonds and Epitaxial 4H-SiC

• Radiation Monitoring

Successfully tested BaBar and Belle devices

CMS performing tests this summer

Radiation monitoring should lead to the development of the next level
radiation hard devices
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Future Plans for RD42

• Charge Collection

Continue research program to improve pCVD material:

collection distance → 300µm (Q̄ = 10, 800e)

→ improved uniformity

→ identification of trapping centers

Begin research program on scCVD diamond

• Radiation Hardness of Diamond Trackers and Pixel Detectors

Continue tracker irradiations this year, add pixel irradiations

With Protons:

→ 5× 1015/cm2

With Pions:

→ 5× 1015/cm2

With Neutrons:

→ 5× 1015/cm2

• Beam Tests with Diamond Trackers and Pixel Detectors

→ trackers with intermediate strips, SCTA128 electronics

→ pixel detectors with ATLAS and CMS radhard electronics now available!

→ construct the first full ATLAS diamond pixel module

• Material Research

→ Florence, OSU, Paris, Rome
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Future Plans for RD50

Goals: Define optimal materials and device structures to ensure best
radiation tolerance.

• Defect Engineering of Si

Oxygen, Oxygen dimmers, etc

• New Materials

SiC, GaN

• New Geometries

3D, thin detectors

• Defect Modeling and Device Simulation

Detectors should (soon) be able to handle the highest luminosities of the
SLHC!
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