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TriggerTrigger

Multi-level trigger system

Reject background

Select most interesting collisions

Reduce total data volume



Workshop Super Collider - September 2003 5 P. Vande Vyvre CERN-EP

Data acquisitionData acquisition

Acquire data from 1000’s of sources

Reassemble all the data of same event
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TRG/DAQ/HLT @ LHCTRG/DAQ/HLT @ LHC
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ReferenceReference TRG/DAQ/HLTTRG/DAQ/HLT
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High-Level
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TRG @ LHC (1)TRG @ LHC (1)
# Trigger Rate First 

Levels Level Trigger
(Hz) 

ALICE
4 Pb-Pb 6x103

p-p 103

ATLAS
3 L 1 105

L 2 2x103

CMS
2 L 1 105

LHCb
3 L 0 106

L 1 4x104
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TRG @ LHC (2)TRG @ LHC (2)
ALICE ATLAS CMS LHCb
40 40 40 40 MHz
0.9/5.2 2.5 2.5  4/<2000 µµµµs Level 0/1
6 75 100 1100/40 kHz

120 GByte/s
0.08 10 ms Level 2
2 2 kHz

~200 ~100 ~100 ~200 Hz HLT
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DAQ @ LHC (1)DAQ @ LHC (1)
Event Readout 
Size (HLT input)
(Byte) (Events/s.) (GByte/s)

ALICE
Pb-Pb 5x107 2x103   25
pp 2x106 102 1

ATLAS
106 2x103 10

CMS
106 105 100

LHCb
2x105 40x104 4
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DAQ @ LHC (2)DAQ @ LHC (2)
ALICE ATLAS CMS LHCb

25 10 100 4 GByte/s
2.5 6 GByte/s

200 100 100 40 MByte/s
1250 300 100 MByte/s
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Mass Storage @ LHCMass Storage @ LHC
Readout Data archived

(HLT output) Total/year
(Events/s.) (MByte/s) (PBytes)

ALICE
Pb-Pb 2x102   1250 2.3
pp 102 200

ATLAS
Pb-Pb 300 6.0
pp 102 100

CMS Pb-Pb 100 3.0
pp 102 100

LHCb
2x102 40 1.0



Workshop Super Collider - September 2003 13 P. Vande Vyvre CERN-EP

Rates & Bandwidths @ LHCRates & Bandwidths @ LHC
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Super Super collidercollider referencereference
� References:

� hep-ph/0204087 “Physics potential and 
experimental challenges of the LHC luminosity 
upgrade”

� ICFA workshop October 2002 on advanced 
hadron colliders

� Complement to LHC in TeV region
� e+e- colliders

� µ+µ- colliders

� After LHC
� Multi-10-100 TeV
� LHC energy upgrade

� New magnets, new machine
� Technical feasibility being studied

� LHC luminosity upgrade L=1035c m-2s-1, bunch 
crossing 12.5 ns

� “ Modest” change to machine
� Major upgrade for experiments
� Tracker occupancy increased by 10
� Used here as reference collider

� VLHC, CLIC
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Consequences for DAQConsequences for DAQ

� Rate increase

� Data volume increase

� Massive need for data transfer, processing and storage
� 1000’s of links to transfer 10’s TByte/s off-detector

� Event building at TByte/s

� Data storage at GByte/s

� Impact of duration and complexity

� DAQ and HLT based on commodity components

� Need for R&D and prototyping
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Trigger, DAQ, HLTTrigger, DAQ, HLT

� Trigger Level 1
� Custom logic

� Special architectures

� Computing farm

� Trigger Level 2
� Special architectures

� Computing farm

� DAQ
� Ad-hoc solution (readout)

� Computing farm

� High Level Trigger (HLT)
� Computing farm

� HEP specific
� Home-made development

� Custom building blocks

� Fast but rigid

� Obsolescence of dev. tools

� Programmable by “a few experts”

� General-purpose
� Home-made software

� Commodity building blocks

� Slow but flexible

� Long-term availability tools

� Programmable by “all”

� For DAQ and HLT: custom if no alternative
� Evolution of industry will be the driving force
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Moore’s LawMoore’s Law

© Intel corp.
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Chip key parametersChip key parameters
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Memory capacityMemory capacity
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Memory and I/O bus BandwidthMemory and I/O bus Bandwidth
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On and off board data communication On and off board data communication 

� Standardize in the box (Rapid I/O, Hyper-Transport, etc)

� The RapidIO Interconnect Architecture:
� Chip-to-chip and board-to-board communications

� Gbit/s and beyond.

� High-performance, packet-switched, interconnect technology

� Switches on the board

� The RapidIO Trade Association:
� Non-profit corporation controlled by its members

� Direct the future development 

� For networking products: increased bandwidth, lower costs, and a
faster time-to-market than other more computer-centric bus standards.

� Steering Committee: Alcatel, Cisco Systems, EMC Corporation, 
Ericsson, Lucent Technologies, Mercury Computer Systems, Motorola, 
and Nortel Networks 
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I/O bus evolutionI/O bus evolution

� PCI is today’s de-facto standard
� Initiative of Intel
� Public from the start, “imposed” to industry

� Exceptional period of stability and compatibility 

� Industry de-facto standard for local I/O: PCI (PCI SIG)
� 1992: origin 32 bits 33 MHz 133 MBytes/s
� 1993: V2.0 32 bits

� 1994: V2.1
� 1996: V2.2 64 bits 66 MHz 512 MBytes/s
� 1999: PCI-X 1.0 64 bits 133 MHz 1 GBytes/s

� 2002: PCI-X 2.0 64 bits 512 MHz 4 Gbytes/s

� Future: PCI-X 2.0, 3GIO, PCI-Express
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I/O and system bussesI/O and system busses

Bus Industrial Bus Bus Max. bw Type
Support width clock on single

(bits) (MHz) channel
PCI 32 bits/33 MHz 1990, Intel 32 33 132 Bus
PCI 64 bits/33 MHz 64 66 264 Bus
PCI 64 bits/66 MHz 1995, PCI SIG 64 66 533 Bus
PCI-X 2000, IBM, Compaq, HP 64 133 1056 Bus
Future I/O IBM, Compaq, HP Channel

Adaptec, 3COM
NGIO 2.5 Gb Intel, Sun, Dell, serial 2500 500 Channel

Hitachi, NEC, Siemens
Infiniband Intel, Sun, Dell, IBM serial 2500

Compaq, HP, Microsoft

I/O

System
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InfinibandInfiniband

� Techno
� 2.5 Gbit/s line rate

� 1, 4 or 12 lines giving 0.5, 2, 6 GB/S
� Switch-based system
� Transport: reliable connection and datagram, unreliable connection 

and datagram, IPV6, ethertype

� Common link architecture and components with Fibre 
Channel and Ethernet

� Chips: Cypress, IBM, Intel, LSI logic, Lucent, Mellanox, 
Redswitch

� Products: Adaptec, Agilent



Workshop Super Collider - September 2003 27 P. Vande Vyvre CERN-EP
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InifinibandInifiniband: multiple hosts: multiple hosts
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Networking technologyNetworking technology
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Trigger & Timing distributionTrigger & Timing distribution

� Transfer from TRG to electronics 
� One to many
� Massive broadcast (100’s to 1000’s)

� Optical, Digital
� HEP-specific components

� HEP developments
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LHC Trigger & Timing distributionLHC Trigger & Timing distribution
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Detector & Readout Data LinksDetector & Readout Data Links

� Interface and data-transfer detector/DAQ

� Point-to-point

� Massive parallelism (100’s to 1000’s)

� Analog: HEP-specific components

� Digital
� HEP developments based on commodity components
� Fiber Channel or Gig. Ethernet: 1, 2.1 or 2.5 Gb/s

� Future
� Optical component and FPGA for 10 and 40 Gb/s
� DWDM (Dense Wave Division Multiplex) up to 1 Tb/s
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Links AdaptersLinks Adapters

� Adapter for 1 or a few links to I/O bus of the 
memory or the computer 

� Many-to-one

� Massive parallelism (100’s to 1000’s)

� Physical interface realized by
� Custom chip
� IP core (VHDL code synthesized in FPGA)

� Implementation depend upon I/O bus 
evolution
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Link and adapter performanceLink and adapter performance

• PCI 32 bits 66 MHz with commercial IP core

• No large local memory. Fast transfer to PC memory

Readout over PCI
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SubeventSubevent & event buffer& event buffer

� Baseline: 
� Function: fast dual-port memories

� Adopt commodity component (PC)

� Key parameters:
� Cost/performance

� Performance: memory bandwidth

� Future
� Faster memory clock

� Wider data bus
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Dual CPU ArchitecturesDual CPU Architectures
2 players in commodity market: AMD, Intel
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Memory BenchmarksMemory Benchmarks

DDR266 1x Stream: 2x Stream: 4x Stream:
2x Opteron, 1.8 GHz, HyperTransport: 1006 – 1671 MB/s 975 – 1178 MB/s 924 – 1133 MB/s 
2x Xeon, 2.4 GHz, 400 MHz FSB: 1202 – 1404 MB/s 561 – 785 MB/s 365 – 753 MB/s
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HLTHLT

� Baseline: 
� Function: fast dual-port memories and data 

processing

� Adopt commodity component (PC)

� Key parameters:
� Cost/performance

� Performance: memory bandwidth & CPU 
performance 

� Future
� Faster CPU clock

� Multi CPUs chips (3G, human I/O)

� Wider data bus
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Performance predictionsPerformance predictions

Raw performance usable by HEP !
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Event Building Network (1)Event Building Network (1)

� Baseline: 
� Adopt broadly exploited standards

Switched Ethernet (ALICE, ATLAS, LHCb)

� Adopt a performing commercial product

CMS: Myrinet baseline, Gbit Eth. as backup

� Motivations for switched Ethernet: 
� Performance of Gigabit Ethernet switches already 

adequate for DAQ @ LHC

256 Gbit/s of aggregrate bandwidth 

� Use of commodity items: network switches and interfaces

� Easy (re)configuration and reallocation of resources

� Future: 40 or 100 Gbit/s Eth.
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Event Building Network (2)Event Building Network (2)

Data sources (readout) Data destinations (event builders)

Switch-based network

1x10 Gbit switch
32 ports

32 x 1 Gbit switch
of 24 ports
768 ports
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Ethernet Ethernet NIC’sNIC’s Performance Performance 

� Gigabit Ethernet
� New generation of PC motherboard 

includes 2 Gbit Eth ports

� Active market with several players
� 3Com, Broadcom, Intel, NetGear
� Fast evolution since 3 years
� BW: from 50 to 110 MB/s
� CPU usage: 150 to 60 %

� TCP/IP Offload Engine (TOE)
� Dedicated processor to execute IP stack

� 10 Gigabit Ethernet
� Up to 700 MB/s
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Scalability of networkScalability of network--based event building based event building 
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Performance of networkPerformance of network--based event buildingbased event building

Event buildingEvent building
No recordingNo recording
•• 5 days non5 days non--stopstop
•• 1750 1750 MBytes/sMBytes/s sustained (goal was 1000)sustained (goal was 1000)
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Transient Data StorageTransient Data Storage

� Transient Data Storage
� Before archiving to tape, if any
� Several options

� Disk Technology
� IDE: 2 SFr/GB naked, 8 SFr/GB with infra.

� Density: 2 Gbit/in2

� Disk attachment: 

� DAS: IDE, SCSI, Fiber Channel, serial-ATA

� NAS: disk server

� SAN: Fiber Channel

� RAID-level

� Key selection criteria: 
cost/performance & bandwidth/box
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Disk attachmentDisk attachment

8 May 2002 1

Disk Connection Technology Evolution
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Storage: file & record size Storage: file & record size 
(file cache active)(file cache active)

Burst performance ! Irrelevant for HEP !
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Storage: file & record size Storage: file & record size 
(file cache inactive)(file cache inactive)
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Storage: effect of connectivityStorage: effect of connectivity
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Transient Data StorageTransient Data Storage

� Disk storage highly non scalable
� To achieve high bandwidth performance

� 1 stream, 1 device, 1 controller, 1 bus
� With these conditions, sustained transfer bw to media:

� 15-20 MB/s with 7.5 kRPM IDE disks
� 18-20 MB/s with 15 kRPM SCSI disks

� To obtain high bandwidth with commodity solutions
� Footprint too big
� Infrastructure cost too high

� More compact and stable performance
� RAID (Redundant Array of Inexpensive Disks)

� RAID 5, large caches, intelligent controllers
� Lots of provider (Dot Hill, EMC, IBM, HP)
� Bw: 30-90 Mbytes/s sustained



Workshop Super Collider - September 2003 52 P. Vande Vyvre CERN-EP

Storage ArrayStorage Array

13 May 2002 EMC Clariion 1
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Storage: effect of SCSI RAIDStorage: effect of SCSI RAID
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Permanent Data Storage (1)Permanent Data Storage (1)
� Infinite storage at very low cost
� 1 realistic solution: magnetic tape

� Media: 0.3 SFr/GByte
� Density: 0.1 Gbit/in2

� Critical areas
� Must be hidden by a MSS
� Limited market, different application
� Limited competition, no real alternative

� Demonstrated solution for LHC
� 15 parallel streams
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Permanent Data Storage (2)Permanent Data Storage (2)

Tape Drive
STK 9940A 10 MB/s

60 GB/Volume
SCSI

STK 9940B 30 MB/s
200 GB/Volume
Fibre Channel

Tape Library
Several tape drives of both generations
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Permanent Data Storage (3)Permanent Data Storage (3)
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Storage: Tape Bandwidth (prevision)Storage: Tape Bandwidth (prevision)
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Storage: Tape Capacity (prevision)Storage: Tape Capacity (prevision)
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DAQ Software FrameworkDAQ Software Framework
� DAQ Software Framework

� Common interfaces for detector-dependant applications
� Address all configurations and all phases from the start
� For SLHC: handle more and more complexity

� DAQ Software 
� Complete ALICE DAQ software framework in 3 packages:

� DATE:
� Data-flow: detector readout, event building
� System configuration, control (1000’s of programs to start, stop, synchronize) 

� AFFAIR: Performance monitoring
� MOOD: Data quality monitoring

� Production-quality releases
� Evolving with requirements and technology

� Key issues
� Scalability (1 to 1000, demonstrate it)
� Support and documentation
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ECS

operators

ECS functions
• Configuration and booking

• Synchronize subsytems

• Operator console 

•Automated proceduresc on f i g

operators

• State Machines

• Command/Status

TPCPi x e l M u o n TPCPi x e l M u o nTPCPi x e l M u o n

D CS D A QT R G

D A QT R GD CS

Experiment Control SystemExperiment Control System
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Data Flow Data Flow -- DATEDATE
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Run Control Run Control -- DATEDATE

State of
one node



Workshop Super Collider - September 2003 63 P. Vande Vyvre CERN-EP

Performance monitoring Performance monitoring -- AFFAIRAFFAIR

LDC

Evt. Build.
Switch

GDC

Disk
Server

DATE

ROOT
I/O

CASTOR
Tape

Server

ROOT I/O 
performances

FilesRound
Robin DB

DATE 
performances

Fabric monitoring

ROOT
DB

ROOT
Plots

ROOT
Plots

for Web

CASTOR performances
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Data Quality Monitoring Data Quality Monitoring -- MOODMOOD
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DAQ for Super DAQ for Super ColliderCollider ExperimentsExperiments

� DAQ and HLT of LHC experiments

� Supercollider reference

� Technology trends

� DAQ and HLT for SLHC experiments

� R&D

� Conclusions
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R&D for the SLHCR&D for the SLHC

� Semiconductor industry is the driving force:
� Industry has learned to do switches for Telco: 

� Silicon has been developed

� Exponential development of Internet: commodity networking

� Switches at all levels in Trigger/DAQ architecture
� Chips

� Boards (Rapid I/O, HyperTransport)

� Systems (switched LAN)

� Collaboration (WAN at OC192-10 Gbit/s and OC768-40 Gbit/s) 

� Questions to be considered
� Permanent technological progress: hype or reality ?

� Industry evolution: taking a “good” direction ?

� Will HEP afford cost of R&D ?

� How should the R&D be performed ? 



Workshop Super Collider - September 2003 67 P. Vande Vyvre CERN-EP

Moore’s law: myth and reality (1)Moore’s law: myth and reality (1)

� Observation by G. Moore in 1965 when working at Fairchild 
� “Cramming more components onto integrated circuits”, 

in Electronics Vol. 38 Nb 8, April19, 1965

� “Complexity of minimum cost semiconductor component had doubled every year”.

� Cost per integrated component ≈ 1/number of components integrated

But yield decreases when components added

∃ Minimum cost at any point in time

� In 1975, prediction that doubling every 2 years
� G. Moore co-founded Intel

� His law became the Intel business model

� Initially applied to memory chips, then to processors

� Interpretation and evolution of Moore’s law 
� In the 1980’s: ⇒ doubling of transistors on a chip every 18 months

� In the 1990’s: ⇒ doubling of microprocessor power every 18 months

� Subject of debate in the semiconductor industry. However…
� Intel: in 1971 the 4004 had 2250 transistors, in 2000 the PIV had 42 Millions

� Exponential evolution over 30 years 
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Moore’s law: myth and reality (2)Moore’s law: myth and reality (2)

© Intel corp.

Mr. Illka Tuomi

Verify real performance with HEP application
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Evolution could go in a bad direction…Evolution could go in a bad direction…

� Vulnerability
� HEP depends upon evolution of commodity markets

� A typical example
� PC form factor not well adapted to the vast majority of end-users

� Who wants to change graphics card ?

� The present format (desktop with a PCI bus) handy for HEP
� Mass market could go for a closed box (such as video games)

� Video games platform: 
� Hw and system Sw fixed; only application sw change
� Price does not cover the cost. Benefits done with the appl. sw
� Unusable for HEP.

� Situation not so bad
� HEP using 2 CPUs machines
� HEP is not alone. Lots of applications: computing centres, ISP etc.
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…or in the good direction…or in the good direction

� Need to move data continues to increase
� The cost of moving data continues to decrease 

� Largest Gbit Eth. switches: Multi Tbits/s
� 10 Gbit/s networking

� Components exist but the price is high or even outrageous
� LAN (10 Gbit/s Eth port): 25-75 k$, 5k$ in 2006
� WAN (10 Gbit/s SONET/SDH): 150-325 K$

� Present period of economic restriction not favorable but the 
deployment has started

� Optical switching is the next big evolution
� Components exist

� Application exist
� Commercialization requires huge investments and will take time
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Can HEP afford R&D ?Can HEP afford R&D ?

� Resources needed
� Collaboration extremely collaborative with networking 

and computing industry
� Early access to new products
� HEP has demanding needs and contributes efficiently to field-testing
� Substantial contribution to R&D

� Might be more difficult for chip development
� New semi-conductor fab for 90 nm: ≅ 1 B$
� Small number of players
� Investment can only be absorbed by very large volumes

� Commodity products: mobile phones, PDA, PC (CPU and DRAM)
� Little room for tests of new ideas or for small productions
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“R&D “R&D humanumhumanum estest” (1)” (1)

�RD-12
Readout system test 
benches.

�RD-13
A scalable data taking 
system at a test beam for 
LHC.

� RD-24
Applications of the 
scalable coherent 
interface to data 
acquisition at LHC (SCI).

�RD-31
NEBULAS: An 
asynchronous self-routing 
packet-switching network 
architecture for event 
building in high rate 
experiments (ATM). 

�RD-27
First-level trigger 
systems for LHC 
experiments.

�RD-11
EAST Embedded 
architectures for 
second-level triggering 
in LHC experiments

�LCB_005
Event Filter Farm
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“R&D “R&D humanumhumanum estest” (2)” (2)

Data format, I/O

Distributed access

Physics simulation

Software 
Development tools

Data visualization

Users applications

Software 
framework

Mass Storage 
System

� RD 41 - MOOSE
� LCB_006 – SPIDER 

� GEANT 3
� RD44 GEANT 4
� FLUKA

� ROOT I/O
� RD-45 - OODBMS

� ROOT display
� LCB_001 – LHC++

� LCB_003 – MONARC
� GRID projects

� HPSS
� Eurostore

� CASTOR



Workshop Super Collider - September 2003 74 P. Vande Vyvre CERN-EP

Outcome of LHC R&DOutcome of LHC R&D

� Design and implementation of hardware components
� TTC system for the trigger distribution

� Design and implementation of software packages
� ROOT package e.g.

� Proof of concept of major concepts
� Positive recommendation of using a communication switch for the event 

building based on tests with ATM. Different technologies considered today 
(Gigabit Ethernet, Myrinet). 

� Positive recommendation of technologies
� Object Oriented (OO) programming for the LHC software.

� None or few negative recommendations but some 
recommended technologies have not been adopted by 
experiments
� Commercial software for offline framework
� OO database for the storage of raw data
� Usage of Microsoft Windows for physics data processing
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Lessons from LHC R&D for DAQ and HLTLessons from LHC R&D for DAQ and HLT

� HEP specific but ample usage  of commercial elements
� R&D ? Not really… 

� Influence of industrial developments: track technology

� Maintain and develop competence 

� Best result for problem-oriented not technology oriented
� Risks associated with cutting-edge technology 

� Technology development failure
� Not adopted by industry
� Taken-over by the next technological wave

� Push 1 technology at all costs (e.g. OODB for raw data)

� Different approaches
� Event building: network-based (ATM, FCS) or memory-based (SCI)

� Network-based was the undisputed winner but with different technologies (switched 
Ethernet and Myrinet)

� Progress monitoring
� Factual deliverables (“paperware” is not enough) 

� Open development

� Early exposure to end application

� Long and repeated delays for computer-technology based R&D project 
indicate a lack or diminishing interest from industry
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ConclusionsConclusions
� DAQ and HLT of LHC experiments (reference architecture)

� Similar architecture, comparable concepts

� Large and complex systems made of 1000s of commodity components

� Super Collider reference model: LHC luminosity upgrade
� Higher tracker occupancy

� DAQ and HLT: increased needs for data transfer and processing  

� Technology evolution
� Data processing: current evolution will carry at least up for the next few years

� Data transmission

� 10 Gbit/s point-to-point, optical switching

� Fractal explosion of switched architecture (boards, subsystems, DAQ, HLT) 

� DAQ for SLHC:
� Ingredients: 2 CPUs PCs, Linux, switched Eth., IDE disks with RAID and SAN, mag. tape

� R&D
� DAQ and HLT: more technology tracking than pure R&D. Application driven.

� Strong links with industry

� Critical areas: access to micro-electronics fabs, R&D process


