Some Remarks about the Forward Region

D. Schulte

Interaction Point Layout

- Important components are
 - final quadrupoles, 3.5m from the IP
 - quadrupole support with stabilisation system
 - hope to make a design in the future
 - masks
 - intra-pulse interaction point feedback
 - luminosity monitoring
 - for the moment see fast signal in extraction line only
 - compensating solenoids etc
 - to reduce impact of main detector solenoid on luminosity, being studied
 - specific instrumentation
 - for tuning up the machine, not yet defined
- ullet L^{\star} and crossing angle have been discussed before

Mask Design

- Current CLIC design corresponds to old TESLA design
 - improvement is possible
 - quadrupole can be further out
- Outer mask suppresses backscattered photons
 - maybe less coverage would be sufficient

- Inner mask prevents backscattering of charged particles
 - distance needs to be small enough that exit hole is smaller than vertex detector (neutrons)

Beam-Beam Jitter Tolerance

- For a vertical emittance of 20 nm one finds for 0.2 nm beambeam vertical position jitter
 - 1.0% loss with rigid bunch
 - \Rightarrow tolerances 0.15-0.2 nm
- Inclusion of beambeam effects finds almost the same values
 - 1.0%
 - 0.28 nm yields 2.2% ⇒ tolerances 0.14– 0.18 nm

• Limit value for enhancement of coherent beam jitter is

$$\Delta y = \frac{\Delta y_0}{1 - n_c \frac{4Nr_e}{\gamma \theta_c^2} \frac{\delta y'}{\delta \Delta y_0}}$$

 $\Delta y = 1.09 \Delta y_0$

Intra-Pulse Interaction Point Feedback

- Reduction of jitter is dominated by feedback latency
 - IP to BPM
 - electronics
 - Kicker to IP
- \bullet Assuming 40 ns one can hope for about a factor 2
- Only cures offsets

Integration of the Intra-Pulse Feedback

- Time of flight to and from IP is critical
- Three main components
 - BPM
 - kicker
 - amplifier
- All need to be close together
- Obvious place behind inner mask
 - does not add material before low angle tagger

Background Sources

Machine produced background before IP

beam tails from linac synchrotron radiation muons beam-gas, beam-black body radiation scattering

Beam-beam background around IP

beam particles
beamstrahlung
coherent pair creation
incoherent pair creation
hadron production
secondary neutrons

Spent beam background

backscattering of particles especially neutrons

Luminosity and Background Values

		CLIC	CLIC	CLIC	CLIC(vo)	ILC	NLC
E_{cms}	[TeV]	0.5	1.0	3.0	3.0	0.5	0.5
f_{rep}	[Hz]	100	50	50	100	5	120
n_b		312	312	312	154	2820	190
σ_x	[nm]	115	81	40	40	655	243
σ_y	[nm]	2	1.4	1	1	5.7	3
Δt	[ns]	0.5	0.5	0.5	0.67	340	1.4
N	$[10^9]$	3.7	3.7	3.7	4.0	20	7.5
ϵ_y	[nm]	20	20	20	10	40	40
L_{total}	$10^{34} cm^{-2} s^{-1}$	2.2	2.2	5.9	10.0	2.0	2.0
$L_{0.01}$	$10^{34} cm^{-2} s^{-1}$	1.4	1.1	2.0	3.0	1.45	1.28
n_{γ}		1.2	1.5	2.2	2.3	1.30	1.26
$\Delta E/E$		0.08	0.15	0.29	0.31	0.024	0.046
N_{coh}	10^{5}	0.03	37	3.8×10^{3}	?		
E_{coh}	$10^3 TeV$	0.5	1080	2.6×10^{5}	?	_	
n_{incoh}	10^{6}	0.05	0.12	0.3	?	0.1	n.a.
E_{incoh}	$[10^6 GeV]$	0.28	2.0	22.4	?	0.2	n.a.
n_{\perp}		12.5	17.1	45	60	28	12
n_{had}		0.14	0.56	2.7	4.0	0.12	0.1

- Target is to have about one beamstrahlung photon per beam particle
 - similar effect to initial state radiation
 - ⇒ average energy loss is larger in CLIC than ILC

Main Spent Beam Contents

- The beam particles are deflected by the beam-beam forces
- They radiate hard photons, the beamstrahlung
- In the strong beam fields beamstrahlung photons can turn into an electron positron pair
- Cross section depends exponentially on the field
- \Rightarrow Rate of pairs is small for centre-of-mass energies below $1\,\mathrm{TeV}$
- \Rightarrow In CLIC, rate is substantial

Spent Beam Angular Distribution

- Beam particles are focused by oncoming beam
- Photons are radiated into direction of beam particles
- Coherent pair particles can be focused or defocused by the beams
- ⇒ Extraction hole angle should be significantly larger than 6 mradian

 $1 \, \mathrm{W} \approx 400 \, \mathrm{TeV/bx} \approx 300 \, \mathrm{beamparticles/bx}$

Incoherent Pair Production

Three different processes are important

- Breit-Wheeler
- Bethe-Heitler
- Landau-Lifshitz

The real photons are beamstrahlung photons

The processes with virtual photons can be calculated using the equivalent photon approximation and the Breit-Wheeler cross section

Deflection by the Beams

Most of the produced particles have small angles

The forward or backward direction is random

The pairs are affected by the beam

⇒ some are focused some are defocused

Maximum deflection

$$\theta_m = \sqrt{4 \frac{\ln\left(\frac{D}{\epsilon} + 1\right) D\sigma_x^2}{\sqrt{3}\epsilon \sigma_z^2}}$$

Required Aperture

- Incoherent pairs are shown
 - deflection of coherent pairs is similar
 - but have higher energies, i.e. smaller angles
- Aperture requirement is roughly

$$r \approx 50 \,\mathrm{mm} \sqrt{\frac{s}{\mathrm{m}}}$$

Imperfections could increae this

Impact of the Incoherent Pairs on the Vertex Detector

- Simplified study using simple cylinder without mass
 - coverage is down to 200 mradian
- Simulating number of particles that hit at least once
 - experience indicates
 that number of hits is
 three per particle
 - but needs to be done with real detector parameters
- \Rightarrow At $r_1 \approx 30 \,\mathrm{mm}$ expect 1 hit per train and mm^2
- ⇒ Detector should be a bit larger
 - but depends on technology

Mask Design

- Current CLIC design corresponds to old TESLA design
 - improvement is possible
 - quadrupole can be further out
- Outer mask suppresses backscattered photons
 - maybe less coverage would be sufficient

- Inner mask prevents backscattering of charged particles
 - distance needs to be small enough that exit hole is smaller than vertex detector (neutrons)

Inner Mask

- Low-Z material reduces backscattering
 - it allows electrons and positrons to penetrate with small probability of scattering
 - it reduces energy of backscattered charged particles via ionisation
- Required thickness is about 10 cm

- But hole overlaps with vertex detector
 - ⇒ could have backscattering through the hole, if not careful

Backscattering Scheme

- Magnetic field lines may guide low energy particles back through exit hole into vertex detector layer
 - ⇒ need to prevent backscattering also behind inner mask

Luminosity Tuning Signal

- Luminosity signal
 - radiative Bhabhas appear slow

$$\frac{d\sigma}{dt} = \frac{2\pi m^2 r_e^2}{s^2} \left[\frac{s^2 + u^2}{t^2} + \frac{2u^2}{ts} + \frac{u^2 + t^2}{s^2} \right]$$

- at agressive $\geq 10 \, \mathrm{mradian}$ rate of $\mathcal{O}(20Hz)$
- at safer $\geq 30 \operatorname{mradian}$ rate of $\mathcal{O}(2Hz)$
- ⇒ need 7–70 minutes for 1% luminosity measurement
 - but luminosity is precise to 1% in $2\,\mathrm{s}$
- Other signals can be used to tune knobs
- Good candidate is beamstrahlung
- ⇒ Post collision line instrumentation is critical
- → Tuning simulations with realistic signals are important
 - systematic effects could be important

Hadronic Background

A photon can contribute to hadron production in two ways

- direct production, the photon is a real photon
- resolved production,the photon is a bag full of partons

Hard and soft events exist e.g. "minijets"

Hadronic Events

- Hadronic events with $W_{\gamma\gamma} \geq 5\,\mathrm{GeV}$
- Most energy is in forward/backward direction
 - $E_{vis} \approx 450\,\mathrm{GeV}$ per hadronic event for no cut
 - $E_{vis} \approx 23 \, \mathrm{GeV}$ for $\theta > 0.1$
 - $E_{vis} \approx 12 \, \mathrm{GeV}$ for $\theta > 0.2$
 - 20% from e^+e^- (cannot be reduced)

- Charged tracks from hadronic events add about 20% to the charged hits in the vertex detector
- Secondary nuetron flux can be noticeable

Crossing Angle Comments

- Crossing angle between linacs needs to be fixed
- Beam delivery system has non-zero bend angle (\approx $0.6\,\mathrm{mradian}$)
- Four main options exist
- Would prefer to adjust collision angle
 - optimisations may change BDS angle
- Suggestion: prepare for 20 mradian but be flexible to be able to reduce this
- Would a small modification of crossing angle be acceptable for the detector?

Conclusion

- We prefer a crossing angle of 20 mradian
 - would be nice to have flexibility for small reductions
- An intra-pulse interaction point feedback is helpful
 - but needs to be very to the IP
 - quadrupole stability requirements remain tight
- Need a support for the final quadrupoles
 - space requirements to be worked out
- Masking system needs critical review
- Need to design detector field around the incoming beam line