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Interaction Point Layout

• Important components are

- final quadrupoles, 3.5m from the IP

- quadrupole support with stabilisation system

• hope to make a design in the future

- masks

- intra-pulse interaction point feedback

- luminosity monitoring

• for the moment see fast signal in extraction line only

- compensating solenoids etc

• to reduce impact of main detector solenoid on luminosity, being studied

- specific instrumentation

• for tuning up the machine, not yet defined

• L? and crossing angle have been discussed before



Mask Design

θ i

θm

2m

4cm

quadrupole

vertex detector instr. tungsten

interaction point

graphite

tungsten

kicker

BPM

amplifier

• Current CLIC design corresponds to old
TESLA design

- improvement is possible

- quadrupole can be further out

• Outer mask suppresses backscattered
photons

- maybe less coverage would be suffi-
cient

• Inner mask prevents backscattering of
charged particles

- distance needs to be small enough that
exit hole is smaller than vertex detector
(neutrons)



Beam-Beam Jitter Tolerance

• For a vertical emit-
tance of 20 nm one
finds for 0.2 nm beam-
beam vertical position
jitter

- 1.0% loss with rigid
bunch

⇒ tolerances 0.15–
0.2 nm

• Inclusion of beam-
beam effects finds
almost the same
values

- 1.0%

- 0.28 nm yields 2.2%

⇒ tolerances 0.14–
0.18 nm
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Intra-Pulse Interaction Point Feedback

• Reduction of jitter is dominated by feedback latency

- IP to BPM

- electronics

- Kicker to IP

• Assuming 40 ns one can hope for about a factor 2

• Only cures offsets
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Integration of the Intra-Pulse Feedback

• Time of flight to and from
IP is critical

• Three main components

- BPM

- kicker

- amplifier

• All need to be close to-
gether

• Obvious place behind in-
ner mask

- does not add material
before low angle tagger
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Background Sources

• Machine produced background before IP

beam tails from linac

synchrotron radiation

muons

beam-gas, beam-black body radiation scattering

• Beam-beam background around IP

beam particles

beamstrahlung

coherent pair creation

incoherent pair creation

hadron production

secondary neutrons

• Spent beam background

backscattering of particles

especially neutrons



Luminosity and Background Values

CLIC CLIC CLIC CLIC(vo) ILC NLC
Ecms [TeV ] 0.5 1.0 3.0 3.0 0.5 0.5
frep [ Hz] 100 50 50 100 5 120
nb 312 312 312 154 2820 190
σx [nm] 115 81 40 40 655 243
σy [nm] 2 1.4 1 1 5.7 3
∆t [ns] 0.5 0.5 0.5 0.67 340 1.4
N [109] 3.7 3.7 3.7 4.0 20 7.5
εy [nm] 20 20 20 10 40 40

Ltotal 1034cm−2s−1 2.2 2.2 5.9 10.0 2.0 2.0
L0.01 1034cm−2s−1 1.4 1.1 2.0 3.0 1.45 1.28
nγ 1.2 1.5 2.2 2.3 1.30 1.26

∆E/E 0.08 0.15 0.29 0.31 0.024 0.046
Ncoh 105 0.03 37 3.8 × 103 ? — —
Ecoh 103TeV 0.5 1080 2.6 × 105 ? — —
nincoh 106 0.05 0.12 0.3 ? 0.1 n.a.
Eincoh [106GeV ] 0.28 2.0 22.4 ? 0.2 n.a.
n⊥ 12.5 17.1 45 60 28 12
nhad 0.14 0.56 2.7 4.0 0.12 0.1

• Target is to have about one beamstrahlung photon per beam particle

- similar effect to initial state radiation

⇒ average energy loss is larger in CLIC than ILC

Note: shorter bunches increase the photon energy but not the number



Main Spent Beam Contents

• The beam particles are de-
flected by the beam-beam
forces

• They radiate hard photons,
the beamstrahlung

• In the strong beam fields
beamstrahlung photons
can turn into an electron
positron pair

• Cross section depends ex-
ponentially on the field

⇒ Rate of pairs is small
for centre-of-mass ener-
gies below 1 TeV

⇒ In CLIC, rate is substantial
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Spent Beam Angular Distribution

• Beam particles are fo-
cused by oncoming beam

• Photons are radiated into
direction of beam particles

• Coherent pair particles
can be focused or defo-
cused by the beams

⇒ Extraction hole angle
should be significantly
larger than 6 mradian

1 W ≈ 400 TeV/bx ≈
300 beamparticles/bx
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Incoherent Pair Production

Three different processes
are important

- Breit-Wheeler

- Bethe-Heitler

- Landau-Lifshitz

The real photons are
beamstrahlung photons

The processes with virtual
photons can be calculated
using the equivalent pho-
ton approximation and the
Breit-Wheeler cross sec-
tion



Deflection by the Beams

Most of the produced par-
ticles have small angles

The forward or backward
direction is random

The pairs are affected by
the beam

⇒ some are focused
some are defocused
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Required Aperture

• Incoherent pairs are
shown

- deflection of coherent
pairs is similar

- but have higher ener-
gies, i.e. smaller angles

• Aperture requirement is
roughly

r ≈ 50 mm
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• Imperfections could in-
creae this
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Impact of the Incoherent Pairs on the Vertex Detector

• Simplified study using sim-
ple cylinder without mass

- coverage is down to
200 mradian

• Simulating number of par-
ticles that hit at least once

- experience indicates
that number of hits is
three per particle

- but needs to be done
with real detector pa-
rameters

⇒ At r1 ≈ 30 mm expect 1 hit
per train and mm2

⇒ Detector should be a bit
larger

- but depends on tech-
nology
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Mask Design
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• Current CLIC design corresponds to old
TESLA design

- improvement is possible

- quadrupole can be further out

• Outer mask suppresses backscattered
photons

- maybe less coverage would be suffi-
cient

• Inner mask prevents backscattering of
charged particles

- distance needs to be small enough that
exit hole is smaller than vertex detector
(neutrons)



Inner Mask

• Low-Z material reduces
backscattering

- it allows electrons and
positrons to penetrate
with small probability of
scattering

- it reduces energy of
backscattered charged
particles via ionisation

• Required thickness is
about 10 cm
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• But hole overlaps with vertex detector

⇒ could have backscattering through the hole, if not careful



Backscattering Scheme

• Magnetic field lines may
guide low energy particles
back through exit hole into
vertex detector layer

⇒ need to prevent
backscattering also
behind inner mask

3cm 4cm



Luminosity Tuning Signal

• Luminosity signal

- radiative Bhabhas appear slow
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- at agressive ≥ 10 mradian rate of
O(20Hz)

- at safer ≥ 30 mradian rate of O(2Hz)

⇒ need 7–70 minutes for 1% luminosity
measurement

- but luminosity is precise to 1% in 2 s

• Other signals can be used to tune knobs

• Good candidate is beamstrahlung

⇒ Post collision line instrumentation is criti-
cal

⇒ Tuning simulations with realistic signals
are important

- systematic effects could be important
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Hadronic Background

A photon can contribute to
hadron production in two
ways

- direct production, the
photon is a real photon

- resolved production,
the photon is a bag full
of partons

Hard and soft events exist

e.g. “minijets”



Hadronic Events

• Hadronic events with
Wγγ ≥ 5 GeV

• Most energy is in for-
ward/backward direction

- Evis ≈ 450 GeV per
hadronic event for no
cut

- Evis ≈ 23 GeV for θ >

0.1

- Evis ≈ 12 GeV for θ >

0.2

- 20% from e+e− (cannot
be reduced)
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• Charged tracks from hadronic events add about 20% to the charged hits in the
vertex detector

• Secondary nuetron flux can be noticeable



Crossing Angle Comments

• Crossing angle between
linacs needs to be fixed

• Beam delivery system has
non-zero bend angle (≈
0.6 mradian)

• Four main options exist

• Would prefer to adjust col-
lision angle

- optimisations may
change BDS angle

• Suggestion: prepare for
20 mradian but be flexible
to be able to reduce this

• Would a small modification
of crossing angle be ac-
ceptable for the detector?



Conclusion

• We prefer a crossing angle of 20 mradian

- would be nice to have flexibility for small reductions

• An intra-pulse interaction point feedback is helpful

- but needs to be very to the IP

- quadrupole stability requirements remain tight

• Need a support for the final quadrupoles

- space requirements to be worked out

• Masking system needs critical review

• Need to design detector field around the incoming beam line


