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Interaction Point Layout

e Important components are

- final quadrupoles, 3.5m from the IP

- quadrupole support with stabilisation system
e hope to make a design in the future

- masks
- intra-pulse interaction point feedback

- luminosity monitoring
¢ for the moment see fast signal in extraction line only

- compensating solenoids etc
¢ to reduce impact of main detector solenoid on luminosity, being studied

- specific instrumentation
e for tuning up the machine, not yet defined

e [* and crossing angle have been discussed before



Mask Design
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e Current CLIC design corresponds to old
TESLA design
_improvement is possible e INnner mask prevents backscattering of

charged particles

- quadrupole can be further out _
- distance needs to be small enough that

e Outer mask suppresses backscattered exit hole is smaller than vertex detector
photons (neutrons)

- maybe less coverage would be suffi-
cient
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Intra-Pulse Interaction Point Feedback

e Reduction of jitter is dominated by feedback latency
- IP to BPM

- electronics
- Kicker to IP

e Assuming 40 ns one can hope for about a factor 2

e Only cures offsets
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Integration of the Intra-Pulse Feedback
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Background Sources

e Machine produced background before IP

beam tails from linac

synchrotron radiation

muons

beam-gas, beam-black body radiation scattering

e Beam-beam background around IP

beam particles
beamstrahlung
coherent pair creation
incoherent pair creation
hadron production
secondary neutrons

e Spent beam background

backscattering of particles
especially neutrons



Luminosity and Background Values

CLIC |CLIC| CLIC |CLIC(vo)| ILC | NLC
Eems TeV| 0.5 | 1.0 3.0 3.0 05 | 05
frep [ HZ] 100 | 50 50 100 5 120
ny 312 | 312 312 154 2820 | 190
o [nm] 115 | 81 40 40 655 | 243
oy [nm] 2 1.4 1 1 5.7 3
At [ns] 0.5 | 05 0.5 0.67 340 | 1.4
N [107] 3.7 | 3.7 3.7 4.0 20 | 7.5
€y [nm) 20 | 20 20 10 40 40
Ligtar | 103 em™2s71| 2.2 | 2.2 5.9 10.0 2.0 | 2.0
Loogr |10¥em™2s71| 1.4 | 1.1 2.0 3.0 1.45 | 1.28
., 1.2 | 15 2.2 2.3 1.30 | 1.26
AE/E 0.08 | 0.15| 0.29 0.31 |0.024|0.046
Neon 10° 0.03| 37 |3.8x10° ? — —
Eecon 10°TeV 0.5 | 1080 | 2.6 x 10° ? — —
Nincoh 10° 0.05 | 0.12 0.3 ? 0.1 | na.
Eineon | [10GeV] | 0.28 | 2.0 22.4 ? 0.2 | na.
ny 12.5 | 17.1 45 60 28 12
Nhad 0.14 | 0.56 2.7 4.0 0.12 | 0.1

e Target is to have about one beamstrahlung photon per beam particle

- similar effect to initial state radiation

= average energy loss is larger in CLIC than ILC



Main Spent Beam Contents

e The beam particles are de-
flected by the beam-beam
forces

e They radiate hard photons,
the beamstrahlung

e In the strong beam fields
beamstrahlung  photons
can turn into an electron
positron pair

e Cross section depends ex-
ponentially on the field

= Rate of pairs is small
for centre-of-mass ener-
gies below 1 TeV

= In CLIC, rate is substantial

dn o,/dE [GeV bx ']

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

0

0

200 400

600 800 1000120014001600
E [GeV]



Spent Beam Angular Distribution

e Beam particles are fo-
cused by oncoming beam

e Photons are radiated into
direction of beam particles

e Coherent pair particles
can be focused or defo-
cused by the beams

= Extraction hole angle
should be significantly
larger than 6 mradian
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Incoherent Pair Production

Three different processes
are important

- Breit-Wheeler
- Bethe-Heitler
- Landau-Lifshitz

The real photons are
beamstrahlung photons

The processes with virtual
photons can be calculated
using the equivalent pho-
ton approximation and the
Breit-Wheeler cross sec-
tion
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Deflection by the Beams

Most of the produced par-
ticles have small angles
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Required Aperture
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shown
- deflection of coherent
pairs is similar 0.1
: . 0.05
- but have higher ener- £ 0 il
gies, i.e. smaller angles > .05
e Aperture requirement is -0.1
roughly
S
r =~ 50 mmE 01
: : 0.08
e Imperfections could in- T 0.06
creae this — 0.04

0.02 | p




Impact of the Incoherent Pairs on the Vertex Detector

e Simplified study using sim-

ple cylinder without mass 1e+06 |

- coverage is down to <~ 100000 k&
200 mradian = B

| _ £ 10000 | *

e Simulating number of par- D .

- - £ 1000 |

ticles that hit at least once £ [

- experience indicates ? 100
that number of hits is é 10 |
three per particle o .

O 1y

- but needs to be done = o1 |
with real detector pa- < T
rameters 0.01

= At r; =~ 30mm expect 1 hit
per train and mm?

= Detector should be a bit
larger

- but depends on tech-
nology




Mask Design

vertex detector < Instr. tungsten
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e Current CLIC design corresponds to old
TESLA design
_improvement is possible e INnner mask prevents backscattering of

charged particles

- quadrupole can be further out _
- distance needs to be small enough that

e Outer mask suppresses backscattered exit hole is smaller than vertex detector
photons (neutrons)

- maybe less coverage would be suffi-
cient



e Low-Z material reduces
backscattering

- it allows electrons and
positrons to penetrate
with small probability of
scattering

- it reduces energy of
backscattered charged
particles via ionisation

e Required thickness is
about 10 cm

Inner Mask
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= could have backscattering through the hole, if not careful



Backscattering Scheme

e Magnetic field lines may
guide low energy particles
back through exit hole into
vertex detector layer

= need to prevent
backscattering also
behind inner mask




Luminosity Tuning Signal

e Luminosity signal
- radiative Bhabhas appear slow
do 2rm2r? [s* + u? N 2u” N u? + 2
dt s {2 ts 52

- at agressive >
O(20H z)

- at safer > 30 mradian rate of O(2Hz)

10 mradian rate of

= need 7-70minutes for 1% luminosity
measurement

- but luminosity is precise to 1% in 2s
e Other signals can be used to tune knobs
e Good candidate is beamstrahlung

= Post collision line instrumentation is criti-
cal

=- Tuning simulations with realistic signals
are important

- systematic effects could be important
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Hadronic Background

J 1
JZ

J 1 WQ SJ
A photon can contribute to %%%
hadron production in two a) b)

ways ﬁﬂf
- direct production, the J 2

photon is a real photon

- resolved  production,

the photon is a bag full ) SJ 1
of partons MWC
J 1

Hard and soft events exist %
J2

e.g. “minijets” c) f
SJ 2




e Hadronic events with
W, > 5GeV

e Most energy is in for-
ward/backward direction

-E,s =~ 450GeV per
hadronic event for no
cut

- B, =~ 23GeV for 6 >
0.1

-E,s ~ 12GeV for 6 >
0.2

- 20% from e*e~ (cannot
be reduced)
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e Charged tracks from hadronic events add about 20% to the charged hits in the

vertex detector

e Secondary nuetron flux can be noticeable



Crossing Angle Comments

e Crossing angle between
linacs needs to be fixed

e Beam delivery system has

non-zero bend angle (=
0.6 mradian)

e Four main options exist

e Would prefer to adjust col-
lision angle

- optimisations may
change BDS angle

e Suggestion: prepare for
20 mradian but be flexible
to be able to reduce this

e Would a small modification
of crossing angle be ac-
ceptable for the detector?



Conclusion

e We prefer a crossing angle of 20 mradian

- would be nice to have flexibility for small reductions

e An intra-pulse interaction point feedback is helpful

- but needs to be very to the IP
- quadrupole stability requirements remain tight

e Need a support for the final quadrupoles

- Space requirements to be worked out
e Masking system needs critical review

e Need to design detector field around the incoming beam line



