POOL Project Status & Plans

Dirk Dtllmann,
IT-DB & LCG-POOL
LHCC Comprehensive Review of the LCG Application Area

25 November 2003

The POOL Persistency Framework

& What is POOL?

* Project Goal: Develop a common Persistency Framework
for physics applications at the LHC

- Pool Of persistent Objects for LHC

* Part of the LHC Computing Grid (LCG)
- One of the first Application Area Projects

+ Common effort between LHC experiments and CERN
IT-DB group
- for defining its scope and architecture
- for the development of its components

'he POOL Persistency Framework D.Duellmann 2

& POOL Objectives i

To allow the multi-PB of experiment data and associated meta data to be
stored in a distributed and Grid enabled fashion

- various types of data of different volumes (event data, physics and
detector simulation, detector data and bookkeeping data)

Hybrid technology approach, combining
- C++ object streaming technology
* Root I/O for the bulk data
- Transactionally safe Relational Database (RDBMS) services,
* MySQL for catalogs, collections and meta data

In particular POOL provides
- Persistency for C++ fransient objects

- Transparent navigation among objects across file and technology
boundaries

* Integrated with a external File Catalog to keep track of the file
physical location, allowing files to be moved or replicated

'he POOL Persistency Framework D.Duellmann 3

@ POOL Timeline and Statistics

POOL project started April 2002
- Ramping up from 1.6 to ~10 FTE
- Persistency Workshop in June 2002
- First internal release POOL V0.1 in October 2002

In one year of active development since then
- 12 public releases
- POOL V1.4.0 is just being released
- Some 60 internal releases

» Often picked up by experiments to confirm fixes/new
functionality

- Very useful to insure releases meet experiment expectations
beforehand

- Handled some 165 bug reports
» Savannah web portal proven helpful

POOL followed from the beginning a rather aggressive schedule to
meet the first production needs of the experiments.

'he POOL Persistency Framework D.Duellmann 4

@ Component Architecture

- POOL is a component based system

- follows the LCG Architecture Blueprint
* Provides a technology neutral API

- Abstract component C++ interfaces

- Insulates the experiment framework user code from
implementation details of the technologies used today

+ POOL user code is not dependent on implementation libraries

- No link tfime dependency on implementation packages
(e.g. MySQL, Root, Xerces-C..)

- Backend component implementations are loaded at runtime
via the SEAL plug-in infrastructure

+ Three major domains, weakly coupled, interacting via abstrac
interfaces

'he POOL Persistency Framework D.Duellmann 5

& POOL Component Breakdown g

POOL API

ROOT I/O L XML Explicit
Storage Svc Catalog Collection

MySQL Implicit)
Catalog Collection

EDG Replica
Location Service

'he POOL Persistency Framework D.Duellmann 6

& Work Package Breakdown

Storage Manager
- Streams transient C++ objects into/from disk storage
- Resolves a logical object reference into a physical object

- Uses Root I/0 for event data, a proof of concept with a RDBMS
storage manager prototype underway for other meta data

File Catalog

- Maintains consistent lists of accessible files (physical and logical names)
together with their unique identifiers (FileID), which appear in the
object representation in the persistent space

- Resolves a logical file reference (FileID) into a physical file

Collections

- Provides the tools to manage potentially (large) ensembles of objects
stored via POOL persistence services

- Explicit: server-side selection of object from queryable collections
» Implicit: defined by physical containment of the objects

'he POOL Persistency Framework D.Duellmann 7

POOL Milestones i

* First "Public" Release - V0.3 December ‘02
- Navigation between files supported, catalog components integrated
- LCG Dictionary moved to SEAL - and picked up from there
Basic dictionary integration for elementary types

+ First "Functionally Complete"” Release - V1.0 June ‘03
- LCG dictionary integration for most requested language features including STL containers

- Consistent meta data support for file catalog and event collections
(aka tag collections)

- Integration with EDG-RLS pre-production service (rlstest.cern.ch)

+ First "Production Release" - V1.1 July " 03

- Added bare C++ pointer support, transient data members, update of streaming layer data,
simplified (user) transaction model

- Due to the large number of requests from integration activities still rather a
functionality release than the planned consolidation release.

- EDG-RLS production service (one catalog server per experiment)
« Starting from POOL V1.3

- (Being) Integrated with three experiment software frameworks

- Successfully deployed in larger scale experiment productions

* Project stayed close to release data estimates
- Maximum variance 2 weeks
- Usually release within a few days around the predicted target date

'he POOL Persistency Framework D.Duellmann 8

& POOL - Known Issues

Need to improve on end-user documentation
- Prepared a first user guide with V1.4
- General overview of the POOL architecture
» collecting some the experience gained during the framework integrations
- Expanding the set of example programs and prepare a hands-on tutorial
+ POOL tutorial held in during the GridKa Computing school -> CSC 04

Testing is not perfect..

- .. and will probably never reach the complexity of the tests from within the experiment
applications.

- 60 functional and integration tests are executed in an automated way each release cycle

- Feature requests now often come as a complete test case from the experiment. Thanks!
Performance optimisation not yet fully addressed

- Performance tests now exist for all components (addressed in June release)

- External design and code reviews setup for use of ROOT I/O and for Object cache
Schema Evolution and Stability of File Format

- Current strategy relies fully on ROOT I/0 facilities

. Ihe. ulse of ROOT I/0 as black box makes more generic schema evolution support not
rivia
- POOL does not fully control the file format, but can help to detect unwanted format
changes during regression testing

'he POOL Persistency Framework D.Duellmann 9

& Storage Manager l

All basic functionality is provided

- Frequency of bug reports significantly dropped during the last
months

Mainly performance and consolidation, but-...

- Current dictionary loading creates deployment problems

- All class dictionaries need to be loaded when ROOT file is
opened

* ROOT provides functionality to relax this constraint

- POOL will work with ROOT team to make lazy dictionary
loading available for POOL clients

- Embedded pointer to non-polymorph type - POOL should store
objects based on the pointer type

Internal Review: Provide ROQOT with POOL references
and collection access

- Looking at POOL plug-in for interactive ROOT

Will demonstrate that POOL can expose the schema
evolution facilities existing in ROO

'he POOL Persistency Framework D.Duellmann 10

& POOL Performance - first cut..

+ POOL has not really been optimised systematically

- Because many functional changes still late in the first
experiment integration phase

- Still first results look reasonable
- We won't be faster than ROOT
- We won't create smaller files than ROOT

- But we want to control the overhead we put on top of ROOT -
comparing to ROOT in areas where root offers similar
functionality

- POOL collection performance show clearly that POOL
insulation overhead can be kept minimal (few percent level)
- POOL provides more functionality and flexibility than
vanilla ROOT

- comparing raw IO speed for very different operations risks to
be comparing apples with pears

'he POOL Persistency Framework D.Duellmann 11

& File Catalog Plans

* Used in the production environment

- Sﬁv.eral reports about successful use in experiment production
chain

- POOL waterfall model consisting of several catalo
implementations to allow a large degree of decoupling and to
cope with very different requirements is used and works

+ Extension to allow for typical Meta Data evolution use

cases
- Eg new meta data elements are introduced during production

- Composite Catalogs

- Accessing a single writable catalog together with several
shared read-only catalogs

- Eg a job reads some user files in addition fo any file from the
large experiment production
+ Coming up
- Upgrade to EDG-RLS 2.2 (required for LCG-2)
- Integration/reimplementation with Globus and ARDA catalogs

'he POOL Persistency Framework D.Duellmann 12

& POOL Collection Futures i

+ Several implementations exist and are used for prototyping
- Integration with experiment frameworks just starting
- Still many open questions about requirements

* Is there a Collection Catalog (like the File Catalog)? A central one?
What collection meta data needs to kept?

+ How do POOL collections tie in with grid middleware?
+ Collection implementation in POOL is a first step
- But the real issue is not the implementation but rather conceptual
- Need active experiment involvement in this area
* Role of collections in a grid environment needs clarification
and prototyping

- Expect active collaboration with ARDA to come up with a model for
deploying collections in production and analysis environments

'he POOL Persistency Framework D.Duellmann 13

& RDBMS Independence T

* POOL should not depend on a particular RDBMS
* Inaddition - MySQL++ is becoming a constraint

- Need a replacement soon for several reasons
» Performance constraint on collections implementation
* Product does not seem to evolve anymore

* Dependent on internals of the GCC compiler
- Difficulties to port mysql++ based code to icc/ecc

* Propose to move to OTL after a "market survey"

- Tests with OTL interfacing to MySQL, Postgres and Oracle suggest
that a high level of independence can be achieved

- Prototype implementations exist for MySQL FileCatalog and
Collections
* Prototypes are now part of V1.4 internal releases cycles and
expected to reach production quality soon

'he POOL Persistency Framework D.Duellmann 14

& Infrastructure & Testing

* Move to AA testing tool - QMtest
- Align with other LCG projects

+ Several new platforms coming up
- icc, ecc and VC for portability check of POOL code
and also as additional development platform
+ Automated data format regression tests

- Highest priority now as experiment data is now
being produced

- Complex schema test cases in collaboration with
experiments
+ Add traceability between bug reports and
release contents and release validation tests

- In collaboration with SPI

'he POOL Persistency Framework D.Duellmann 15

= Summary

POOL has delivered a functional er'sisTencg framework and has been
infegrated into frameworks of CMS, ATLAS and soon LHCb

- Currently used for test productions in CMS

- Possibly with more effort than integration feams expected
POOL as a development team works well and would profit more from
insuring stability than additional manpower

- Some central positions inside POOL are more difficult to back up, but we
remained productive even through vacation periods overlapping with
experiment integrations

POOL operates close to its release plan

- Following “"release early, release often" strate
g Y gy

- Many experiment requirements have been clarified and agreed only during
experiment integration phase rather than upfront

- POOL has been validated on LCG-1

POOL Workplan for 2004 is currently being defined
- Validation of POOL for LCG-2 planned with V1,5

* Many thanks to
- all developers working on the project for their commitment

- all experiment integration teams for their patience and very
constructive feedback!

'he POOL Persistency Framework D.Duellmann 16

