MC-TESTER:

a universal tool for comparisons of Monte Carlo predictions in High Energy Physics

> Piotr Golonka Piotr.Golonka@CERN.CH CERN EP/ATR, AGH/INP Kraków

Zbigniew Wąs (CERN/TH, INP Kraków) Tomasz Pierzchała (UŚI Katowice)

LCG Generator Services monthly meeting, 16 October 2003

MC-TESTER: why?

Areas of use:

Exploration tool

for new (versions/implementations of) generators

Comparisons of physics in generators:

- Particles' decays
- Parton-level (2 → n processes)
- **Debuging:**
 - Generator versions ("flavours")
 - Porting the code (F77 \rightarrow C++ transition)
 - Phase-space inefficiencies
- Event record formats

MC-TESTER analysis:

Generation step:

 For identified process, all possible invariant masses are histogrammed

- At the end of the run, histogrammes are stored in root file
- Analysis step:
 - Creates a table of all processes, matches the corresponding processes from two runs
 - Calculates branching ratios (and statistical errors)
 - Performs statistical analysis all histograms from two generated root files, produces EPS files (and root file)
 - Produces a complete booklet (.ps)

MC-TESTER analysis:

Features:

- Written completely in C++ (compiled code and ROOT macros)
- Directly usable from F77 code
- Simple: two F77 routines to be called in the code
- Support for HEPEVT, LUJETS, PYJETS
- Runtime parameters specified by root macros (flexibility! e.g. read parameters from external file!)
- Easy to integrate/use with existing MC installations (2 .so/.a libraries + root libs)
- Examples of use provided (TAUOLA, PYTHIA)
- Complete analysis environment

Decay channel	Branching Ratio \pm Rough Errors Generator #1 Generator #2		Max. shape dif. param.
$\tau^- \rightarrow \nu_\tau \pi^0 \pi^-$	$25.3683 \pm 0.0159\%$	$25.3085 \pm 0.0159\%$	0.04375
$\tau^- \to e^- \widetilde{\nu_e} \nu_\tau$	$17.8479 \pm 0.0134\%$	$18.1093 \pm 0.0135\%$	0.00000
$\tau^- ightarrow \mu^- \widetilde{\nu_\mu} \nu_\tau$	$17.3866 \pm 0.0132\%$	$17.6326 \pm 0.0133\%$	0.00000
$\tau^- \rightarrow v_\tau \pi^-$	11.0768 ± 0.0105%	$11.1765 \pm 0.0106\%$	0.00000
$\tau^- ightarrow u_{ au} \pi^0 \pi^0 \pi^-$	$9.1865 \pm 0.0096\%$	$9.1171 \pm 0.0095\%$	0.09413
$\tau^- \rightarrow \nu_\tau \pi^+ \pi^- \pi^-$	$8.9837 \pm 0.0095\%$	$8.8828 \pm 0.0094\%$	0.09368
$\tau^- \rightarrow \nu_\tau \pi^0 \pi^+ \pi^- \pi^-$	$4.2973 \pm 0.0066\%$	$4.5319 \pm 0.0067\%$	0.30310
$\tau^- \rightarrow \nu_\tau \pi^0 \pi^0 \pi^0 \pi^-$	$1.0765 \pm 0.0033\%$	1 0090 ± 0.0032%	0.00724
$\tau^- \rightarrow \nu_{\tau} K^-$	$0.7202 \pm 0.0027\%$	$0.7138 \pm 0.0027\%$	0.00900
$\tau^- \rightarrow \nu_\tau \pi^0 \pi^0 \pi^+ \pi^- \pi^-$	$0.4990 \pm 0.0022\%$	$0.0897 \pm 0.0009\%$	0.00000
$ au^- ightarrow u_{ au} \pi^0 K^-$	$0.4785 \pm 0.0022\%$	0.46 ² ± 0.0021%	0.00000
$ au^- ightarrow u_{ au} K_L^0 \pi^-$	$0.4624 \pm 0.0022\%$	$0.4444 \pm 0.0021\%$	0.00000
$\tau^- \rightarrow \nu_\tau \pi^- K_S^0$	$0.4610 \pm 0.0021\%$	$0.4449 \pm 0.0021\%$	0.00000
$ au^- ightarrow u_{ au} \pi^+ \pi^- K^-$	$0.3902 \pm 0.0020\%$	$0.5051 \pm 0.0022\%$	0.52330
$\tau^- ightarrow u_{ au} \pi^0 \pi^- \eta$	$0.1707 \pm 0.0013\%$	$0.1696 \pm 0.0013\%$	0.00000
$\tau^- \rightarrow \nu_\tau \pi^- K^+ K^-$	$0.1704 \pm 0.0013\%$	0 1500 ± 0.0012%	0.07360
$ au^- ightarrow u_{ au} \pi^0 K_L^0 \pi^-$	$0.1605 \pm 0.0013\%$	$0.2745 \pm 0.0017\%$	0.92850
$ au^- ightarrow u_ au \pi^0 \pi^- K_S^0$	$0.1592 \pm 0.0013\%$	$0.2734 \pm 0.0017\%$	0.93657
$ au^- ightarrow u_{ au} \gamma \pi^0 \pi^-$	$0.1559 \pm 0.0012\%$	$0.1303 \pm 0.0011\%$	0.00000
$\tau^- \to \nu_\tau K_L^0 \pi^- K_S^0$	$0.1510 \pm 0.0012\%$	$0.0763 \pm 0.0009\%$	0.00270
$\tau^- \rightarrow \nu_{\tau} K_L^0 K^-$	$0.1289 \pm 0.0011\%$	$0.0508 \pm 0.0007\%$	0.00000
$ au^- ightarrow u_ au K_S^0 K^-$	$0.1287 \pm 0.0011\%$	$0.0507 \pm 0.0007\%$	0.00000
$\tau^- \rightarrow \nu_\tau \pi^0 \pi^0 \pi^0 \pi^+ \pi^- \pi^-$	$0.1094 \pm 0.0010\%$	$0.0506 \pm 0.0007\%$	0.00000
$\label{eq:tau} \tau^- \rightarrow \nu_\tau \pi^+ \pi^+ \pi^- \pi^- \pi^-$	$0.0803 \pm 0.0009\%$	$0.0401 \pm 0.0006\%$	0.00000
$ au^- ightarrow u_{ au} \pi^0 \pi^0 K^-$	$0.0792 \pm 0.0009\%$	$0.0504 \pm 0.0007\%$	0.2919
$ au^- ightarrow u_ au K_L^0 K_L^0 \pi^-$	$0.0760 \pm 0.0009\%$	$0.0372 \pm 0.0006\%$	0.00854
$\tau^- \to \nu_\tau \pi^- K^0_S K^0_S$	$0.0756 \pm 0.0009\%$	$0.0378 \pm 0.0006\%$	0.01189
$\tau^- \rightarrow \nu_\tau \pi^0 K_L^0 K^-$	$0.0507 \pm 0.0007\%$	$0.0763 \pm 0.0009\%$	0.85321
$\tau^- \to \nu_\tau \pi^0 K_S^0 K^-$	$0.0498 \pm 0.0007\%$	$0.0746 \pm 0.0009\%$	0.87506
$\tau^- \rightarrow \nu_\tau \pi^0 \pi^+ \pi^+ \pi^- \pi^- \pi^-$	$0.0186 \pm 0.0004\%$	$0.0293 \pm 0.0005\%$	0.00000

Table of decay modes: •Process (decay channel) •Branching ratio for generator #1 and #2

 Rough statistical errors of branching ratios

•Maximal "Shape Difference Parameter"

 Similarity Coefficients (combined: for all decay modes)

Similarity coefficients: T1=1.881148, T2=4.510389

Example of histogrammes:

HEPEvent library: a unified interface to event record formats

MC-TESTER as librarian tool:

- Automated comparison tests for changing versions of code
- Differences (e.g. new features) visible at a glance!
 Verification of compatibility with other version
- Example: TAUOLA generator
 - 3 versions of code to be managed: CPC, CLEO, ALEPH

MC-TESTER as debuging tool:

Detection of integrity errors in generator systems:
Event gramatics problems

cannot interpret data – reports the cause in debug mode

Configuration clashes and overwrites of private data:

Detects places where one generators "overwrite" the internal data of the other -> differences in distributions (example: BaBar)

Invariant mass distribution – good variable for finding phase-space inefficiencies

Event Record debuging:

 Support for various formats of event record: HEPEvent library: easily extensible!

Compare the same events stored in various formats of event records

 Debug event persistency methods and event record I/O

Event records over pipes...

In general, Monte Carlo modules coded in different languages (F77,F90,C++, Java,Perl...)

Hard to link single main program (needs wrappers)

One may export an event to a file in one module (executable), then read it in another

Possibly large executable files
 why not use UNIX FIFO queues instead?

Synchronized parallelism!

•MC-TESTER example: reading output text files from MadGraph ME generator

Requirements:

 We support Linux (RedHat 6/7/8/9/10beta) on i386 (Tested also on AMD64)

GCC 2.95/2.96/3.x: gcc,g++,g77,make

root 3.X

- latex, (+dvips,gv)
- Unweighted events to be stored in one of supported event records (or text file)
- Work in progress:
 - Support for weighted events
 - support for HEPMC C++ event record
 - Support for MacOS X

Status and availability:

Project's homepage:

http://cern.ch/Piotr.Golonka/MC/MC-TESTER

Current version: 1.112, 1.1p1 (src on the web)

Documentation: (on the web) CERN, LANL, LC preprints, to be published in CPC

Contact:

Piotr.Golonka@CERN.CH Zbigniew.Was@CERN.CH tomek@friend.phys.us.edu.pl

We are open to discussions about:

possible extensions and areas of use

event record formats to be supported (F77,C++,...)

hardware/software platforms to be supported

Please, contact the authors.