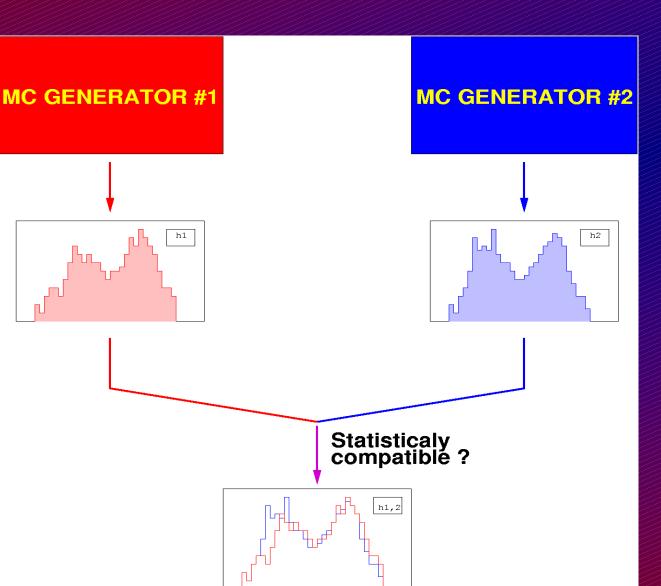
MC-TESTER:

a universal tool for comparisons
of Monte Carlo predictions
in High Energy Physics


Piotr Golonka

Piotr.Golonka@CERN.CH

CERN EP/ATR, AGH/INP Kraków

Zbigniew Wąs (CERN/TH, INP Kraków)
Tomasz Pierzchała (UŚI Katowice)

MC-TESTER: why?

Comparisons of physics content

Debuging, development

Library versior maintainance

Automated test
 of installations of large MC

Areas of use:

- Exploration tool for new (versions/implementations of) generators
- Comparisons of physics in generators:
 - Particles' decays
 - Parton-level (2 → n processes)
- **Debuging:**
 - Generator versions ("flavours")
 - Porting the code (F77→C++ transition)
 - Phase-space inefficiencies
 - Event record formats

MC-TESTER analysis:

- Generation step:
 - For every event produced by tested generator, certain (decay) processes are searched for and identified
 - For identified process, all possible invariant masses are histogrammed
 - At the end of the run, histogrammes are stored in root file

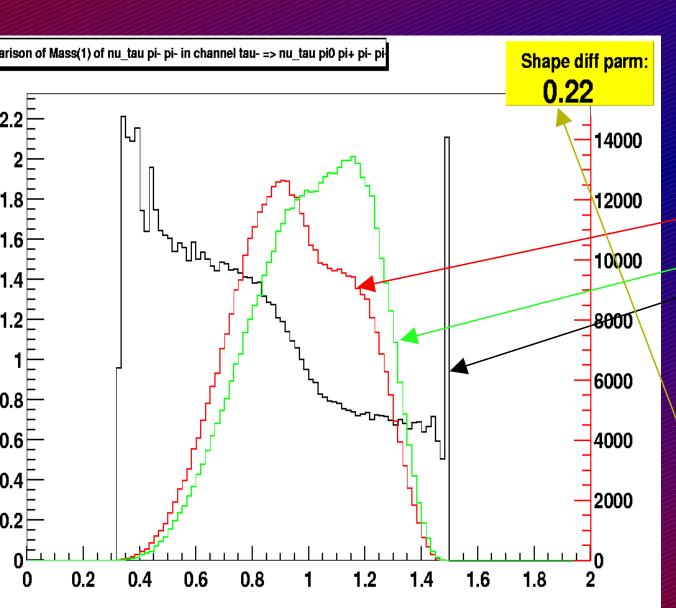
•Analysis step:

- Creates a table of all processes, matches the corresponding processes from two runs
- Calculates branching ratios (and statistical errors)
- Performs statistical analysis all histograms from two generated root files, produces EPS files (and root file)

GENERATION STEP ANALYSIS STEP ROOT MC GEN FILE #1 ESTER aries -decay channels MC-TESTER list of decay chanrbranching ratios -histogrammes Analyser TeX ROOT FILE FILE MC GEN analyzed histogrammes ESTER aries **BOOKLET EPS** ROOT

Features:

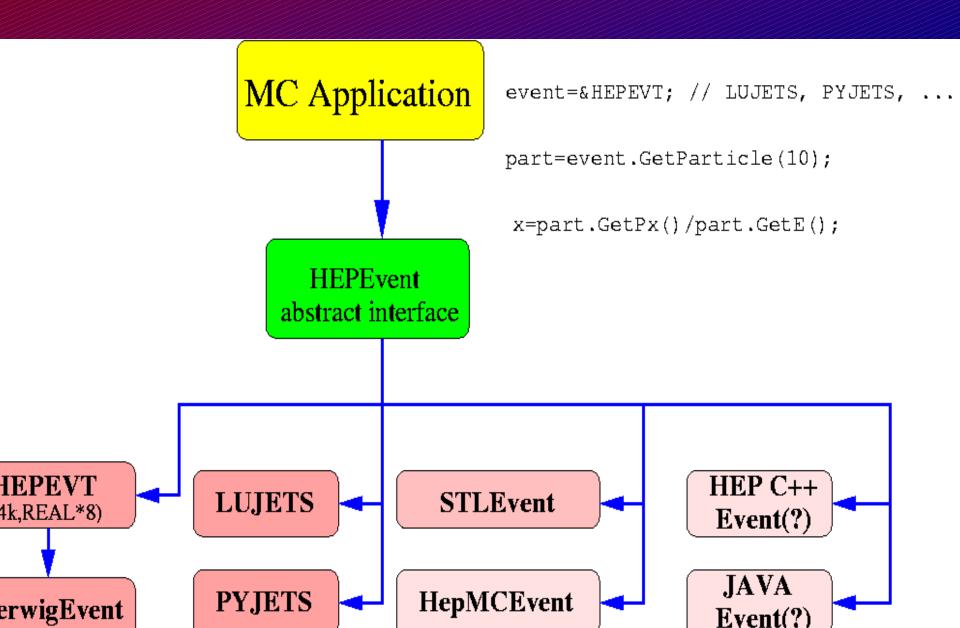
- Written completely in C++ (compiled code and ROOT macros)
- Directly usable from F77 code
- •Simple: two F77 routines to be called in the code
- Support for HEPEVT, LUJETS, PYJETS
- Runtime parameters specified by root macros (flexibility! e.g. read parameters from external file!)
- Easy to integrate/use with existing MC installations (2 .so/.a libraries + root libs)
- Examples of use provided (TAUOLA, PYTHIA)


Decay channel		± Rough Errors	Max. shape
	Generator #1	Generator #2	dif. param.
$ au^- ightarrow au_ au \pi^0 \pi^-$	$25.3683 \pm 0.0159\%$	$25.3085 \pm 0.0159\%$	0.04375
$\tau^- \to e^- \widetilde{\nu_e} \nu_{\tau}$	$17.8479 \pm 0.0134\%$	$18.1093 \pm 0.0135\%$	0.00000
$\tau^- \to \mu^- \widetilde{\nu_{\mu}} \nu_{\tau}$	$17.3866 \pm 0.0132\%$	$17.6326 \pm 0.0133\%$	0.00000
$\tau^- \to \nu_\tau \pi^-$	$11.0768 \pm 0.0105\%$	$11.1765 \pm 0.0106\%$	0.00000
$ au^- ightarrow u_ au \pi^0 \pi^0 \pi^-$	$9.1865 \pm 0.0096\%$	$9.1171 \pm 0.0095\%$	0.09413
$\tau^- \to \nu_\tau \pi^+ \pi^- \pi^-$	$8.9837 \pm 0.0095\%$	$8.8828 \pm 0.0094\%$	0.09368
$\tau^- ightarrow u_ au \pi^0 \pi^+ \pi^- \pi^-$	$4.2973 \pm 0.0066\%$	$4.5319 \pm 0.0067\%$	0.30310
$\tau^- \rightarrow \nu_\tau \pi^0 \pi^0 \pi^0 \pi^-$	1.0765 0.0033%	$1.0000 \pm 0.0032\%$	0.00724
$\tau^- \rightarrow \nu_{\tau} K^-$	$0.7202 \pm 0.0027\%$	$0.7138 \pm 0.0027\%$	0.00000
$^- ightarrow u_{ au} \pi^0 \pi^0 \pi^0 \pi^+ \pi^- \pi^-$	$0.4990 \pm 0.0022\%$	$0.0897 \pm 0.0009\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^0 K^-$	$0.4785 \pm 0.0022\%$	0.46° ± 0.0021%	0.00000
$\tau^- \rightarrow \nu_{\tau} K_L^0 \pi^-$	$0.4624 \pm 0.0022\%$	$0.4444 \pm 0.0021\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^- K_S^0$	$0.4610 \pm 0.0021\%$	$0.4449 \pm 0.0021\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^+ \pi^- K^-$	$0.3902 \pm 0.0020\%$	$0.5051 \pm 0.0022\%$	0.52330
$\tau^- \to \nu_\tau \pi^0 \pi^- \eta$	$0.1707 \pm 0.0013\%$	$0.1696 \pm 0.0013\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^- K^+ K^-$	0.1704 ± 0.00138	$0.1500 \pm 0.0012\%$	0.07360
$\tau^- ightarrow u_{ au} \pi^0 K_L^0 \pi^-$	$0.1605 \pm 0.0013\%$	$0.2745 \pm 0.0017\%$	0.92850
$\tau^- \rightarrow \nu_{\tau} \pi^0 \pi^- K_S^0$	$0.1592 \pm 0.0013\%$	$0.2734 \pm 0.0017\%$	0.93657
$ au^- ightarrow u_ au \gamma \pi^0 \pi^-$	$0.1559 \pm 0.0012\%$	$0.1303 \pm 0.0011\%$	0.00000
$\tau^- \to \nu_\tau K_L^0 \pi^- K_S^0$	$0.1510 \pm 0.0012\%$	$0.0763 \pm 0.0009\%$	0.00270
$\tau^- \rightarrow \nu_{\tau} K_L^0 K^-$	$0.1289 \pm 0.0011\%$	$0.0508 \pm 0.0007\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} K_S^0 K^-$	$0.1287 \pm 0.0011\%$	$0.0507 \pm 0.0007\%$	0.00000
$ ightarrow u_{ au} \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^- \pi^-$	$0.1094 \pm 0.0010\%$	$0.0506 \pm 0.0007\%$	0.00000
$^{-} \rightarrow \nu_{\tau} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-}$	$0.0803 \pm 0.0009\%$	$0.0401 \pm 0.0006\%$	0.00000
$ au^- ightarrow u_ au \pi^0 \pi^0 K^-$	$0.0792 \pm 0.0009\%$	$0.0504 \pm 0.0007\%$	0.2919
$\tau^- \rightarrow \nu_{\tau} K_L^0 K_L^0 \pi^-$	$0.0760 \pm 0.0009\%$	$0.0372 \pm 0.0006\%$	0.00854
$\tau^- \rightarrow \nu_\tau \pi^- K_S^0 K_S^0$	$0.0756 \pm 0.0009\%$	$0.0378 \pm 0.0006\%$	0.01189
$\tau^- \rightarrow \nu_{\tau} \pi^0 K_L^0 K^-$	$0.0507 \pm 0.0007\%$	$0.0763 \pm 0.0009\%$	0.85321
$\tau^- \rightarrow \nu_\tau \pi^0 K_S^0 K^-$	$0.0498 \pm 0.0007\%$	$0.0746 \pm 0.0009\%$	0.87506
$\rightarrow \nu_{\tau} \pi^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-}$	$0.0186 \pm 0.0004\%$	$0.0293 \pm 0.0005\%$	0.00000
		_	

modes:

- Process (decay channel)
- Branching ratio for generator #1 and #2
- Rough statistical errors of branching ratios
- Maximal "Shape Difference Parameter"
- Similarity Coefficients

(aambinad, fam all daagy madas)


Example of histogrammes:

- Histogramme of invariant magnetic from generator
 #1 and #2
- Ratio of the tw histogrammes
- Shape
 Difference
 Parameter value

HEPEvent library:

a unified interface to event record formats

MC-TESTER as librarian tool:

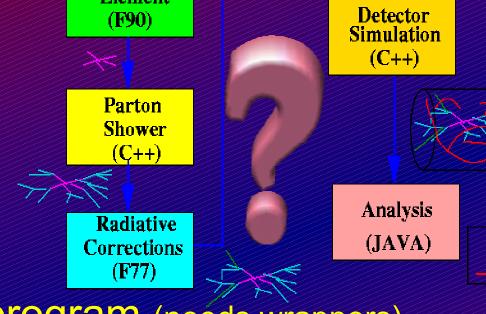
- Automated comparison tests for changing versions of code
- Differences (e.g. new features) visible at a glance!
- Verification of compatibility with other version
- Example: TAUOLA generator
 - 3 versions of code to be managed: CPC, CLEO, ALEPH

MC-TESTER as debuging tool:

Detection of integrity errors in generator systems:

- Event gramatics problems
- cannot interpret data reports the cause in debug mode
- Configuration clashes and overwrites of private data:
 - Detects places where one generators "overwrite" the internal da of the other -> differences in distributions (example: BaBar)
- Invariant mass distribution good variable for finding phase-space inefficiencies

Event Record debuging:


 Support for various formats of event record: HEPEvent library: easily extensible!

Compare the same events stored in various formats of event records

 Debug event persistency methods and event record I/O

over pipes...

n general, **M**onte Carlo modules coded in different languages F77,F90,C++, Java,Perl...)

Hard to link single main program (needs wrappers)

- One may export an event to a file in one module executable), then read it in another
- Possibly large executable files why not use UNIX FIFO queues instead?
- Synchronized parallelism!

MC-TESTER example: reading output text files from adGraph ME generator

Requirements:

- We support Linux (RedHat 6/7/8/9/10beta) on i386 (Tested also on AMD64)
- •Gcc 2.95/2.96/3.x: gcc,g++,g77,make
- root 3.X
- latex, (+dvips,gv)
- Unweighted events to be stored in one of supported event records (or text file)
- •Work in progress:
 - Support for weighted events
 - support for HEPMC C++ event record
 - Support for MacOS X

Status and availability:

Project's homepage:

http://cern.ch/Piotr.Golonka/MC/MC-TESTEF

Current version: 1.112, 1.1p1 (src on the web)

Documentation: (on the web)

CERN, LANL, LC preprints, to be published in CPC

Contact:

Piotr.Golonka@CERN.CH
Zbigniew.Was@CERN.CH
tomek@friend.phys.us.edu.pl

We are open to discussions about:

possible extensions and areas of use

event record formats to be supported (F77,C++,...)

hardware/software platforms to be supported