TOTEM Experiment: Elastic and Total Cross Sections

Jan Kašpar

CERN PH-TOT and Institute of Physics of the AS CR on behalf of the **TOTEM Collaboration**

CERN, June 30, 2009

TOTEM Physics Programme

Total cross section

ultimately $\approx 1\%$ precision

Elastic scattering

wide t range

Hard and Soft Diffraction

(covered by the talk of Simone)

Why...

Elastic scattering (diffraction in general)

- theoretical understanding not complete
- number of approaches: Regge, geometrical, eikonal,
 QCD, . . . ⇒ rather incompatible predictions
- intimately related to the structure of proton

Total cross section

- various models/approaches: $\sigma_{\rm tot} \sim \ln s$, $\sigma_{\rm tot} \sim \ln^2 s$, $\sigma_{\rm tot} \sim s^{\alpha-1}$
- predictions for $\sqrt{s} = 14 \text{ TeV}$: $90 \text{ mb} < \sigma_{\text{tot}} < 130 \text{ mb} \Rightarrow 40\%$ uncertainty
- available data not decisive (incompatible CDF/E810 measurements)
- implications to cosmic ray physics etc.

TOTEM = precise and decisive measurement

Total Cross Section Measurement

• Luminosity Independent Method

$$\sigma_{\rm tot} \propto \Im A(t=0), \qquad {\rm d}\sigma/{\rm d}t \propto |A|^2, \qquad {\rm d}N = \mathcal{L}{\rm d}\sigma, \qquad N_{\rm tot} = N_{\rm el} + N_{\rm inel}$$

$$\sigma_{\rm tot} = \frac{1}{1+\varrho^2} \frac{{\rm d}N/{\rm d}t|_0}{N_{\rm el} + N_{\rm inel}}, \qquad \qquad \mathcal{L} = (1+\varrho^2) \frac{(N_{\rm el} + N_{\rm inel})^2}{{\rm d}N/{\rm d}t|_0}$$

 $\frac{dN}{dt}|_{0}$: extrapolation of elastic rate to t=0

 $N_{
m el}$: total elastic rate $N_{
m inel}$: total inelastic rate

o: ratio of real to imaginary part of elastic amplitude

requirements for detectors: detection of forward protons and large pseudorapidity coverage

TOTEM Detectors

- Roman Pots
 - measurement of forward protons
- telescopes **T1** and **T2**: tracking of charged particles produced in inelastic events
- measurement of inelastic rate

• for details on instrumentation see Gennaro's talk

Acceptance of TOTEM Detectors

Optics

transport of elastic protons

$$x_{\text{det}} = L_x \vartheta_x^* + v_x x^*$$
$$y_{\text{det}} = L_y \vartheta_y^* + v_y y^*$$

 $\vartheta_{x,y}^*$ are angles and x^*, y^* are coordinates of a proton at IP

 $L_{x,y}$ and $v_{x,y}$ are optical functions

define which t can be seen (\equiv acceptance)

example: elastic hits seen by 3 different optics

(the gray ellipse shows 10σ beam envelope)

Scenarios

1) high β^*

- $\beta^* = 1535 \text{ m}$
- $\bullet \mathcal{L} \approx 10^{28} \div 10^{29} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
- elastic resolution: $\sigma(\vartheta_x) \approx 0.23~\mu{\rm rad}$, $\sigma(\vartheta_y) \approx 0.22~\mu{\rm rad}$
- vertical sensors at 1.35 mm from beam center

2) medium β^*

- $\beta^* = 90 \text{ m}$
- $\mathcal{L} \approx 10^{30} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- elastic resolution: $\sigma(\vartheta_x) \approx 5 \ \mu \text{rad}$ (low effective length), $\sigma(\vartheta_y) \approx 1.7 \ \mu \text{rad}$
- vertical sensors at 6.4 mm from beam center

3) low β^*

- $\beta^* = 0.5 \div 2 \text{ m}$ (early running: p = 5 TeV, $\beta^* \sim 3 \text{ m}$)
- $\mathcal{L} \approx 10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- elastic resolution: $\sigma(\vartheta_x) \approx 16 \; \mu \text{rad}, \; \sigma(\vartheta_y) \approx 12 \; \mu \text{rad}$
- vertical sensors at 3.3 mm from beam center
- sensors at $10\sigma + 0.5$ mm from beam center
- resolution (usually) limited by beam divergence

Extrapolation

- ullet d $\sigma/\mathrm{d}t|_0$ experimentally inaccessible
- extrapolation ⇒ parameterization needed

$$T(t)=e^{M(t)}e^{iP(t)}, \quad rac{\mathrm{d}\sigma}{\mathrm{d}t}=|T(t)|^2, \quad M,P ext{ polynomials}$$

- questions
 - optimal fit range
- optimal degree of polynomials
- ... as model independent as possible

Extrapolation and Coulomb scattering

- "elastic scattering = strong (hadronic) + electro-magnetic (Coulomb) interaction"
- 2 approaches
 - "traditional" (à la West-Yennie)

$$T_{\mathrm{WY}}^{C+H} = \pm \frac{\alpha s}{t} f_1(t) f_2(t) e^{\mp i\alpha (\ln(-Bt/2) + \gamma)} + \frac{\sigma_{\mathrm{tot}}}{4\pi} p \sqrt{s} (\varrho + i) e^{Bt/2}$$

- *eikonal* (Kundrát-Lokajíček), formula too long → see the talk of Vojtěch
- traditional approach internally inconsistent → the eikonal one shall be preferred

Extrapolation at $\beta^* = 1535 \text{ m}$

parameterization

$$T(t)=e^{i\Phi}e^{a+(b_0+b_1t+b_2t^2)t}$$
 (quadratic $B(t)$, constant phase)

- using Kundrát-Lokajíček formula
- upper bound $|t| = 4 \cdot 10^{-2} \text{ GeV}^2$
- based on preliminary simulation/reconstruction data
- most models within $\pm 0.2\%$

0.06

0.07 lower bound of fit (GeV⁻²)

0.08

0.04

0.05

 t_u resolution

Extrapolation at $\beta^* = 90 \text{ m}$

- advantage: Coulomb effects negligible • disadvantage: poor t_x resolution (t resolution as well)
- possible solutions:
- 1) use t-distribution anyway
- 2) "convert" t_y -distribution to t-distribution (azimuthal symmetry) $t = t_x + t_y,$ $t_x = t\cos^2\varphi,$ $t_y = t\sin^2\varphi$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t_y} = \frac{\mathrm{d}\sigma}{\mathrm{d}t_x} \quad \Rightarrow \quad \frac{\mathrm{d}\sigma}{\mathrm{d}t}(t) \propto \int_{-\infty}^{\infty} \mathrm{d}u \, \frac{\mathrm{d}\sigma}{\mathrm{d}t_y}(u) \, \frac{\mathrm{d}\sigma}{\mathrm{d}t_y}(t-u)$$

- low $|t_y|$ information missing \Rightarrow extrapolation needed
- 3) "convert" t-parameterization to t_y -parameterization

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t_y}(t_y) = \frac{2}{\pi} \int_{0}^{\pi/2} \frac{\mathrm{d}\varphi}{\sin^2\varphi} \frac{\mathrm{d}\sigma}{\mathrm{d}t} \left(\frac{t_y}{\sin^2\varphi}\right)$$
$$\frac{\mathrm{d}\sigma}{\mathrm{d}t_y}(t_y) \approx \frac{1}{\sqrt{\pi}} \frac{e^{a + bt_y + ct_y^2 + dt_y^3}}{\sqrt{|b \, t_y|}} \quad (c, d \, \mathrm{small})$$

- left: results of approach 3)
- upper bound $|t| = 0.25 \text{ GeV}^2$
- based on preliminary simulation/reconstruction data – the offset -2% due to beam divergence

Total Cross Section – Combined Uncertainty

$$\sigma_{\rm tot} = \frac{1}{1+\varrho^2} \frac{\mathrm{dN/dt}|_0}{\mathrm{N_{el}+N_{inel}}}$$

A ADOREST TO A STATE OF A STATE O			
		$\beta^* = 90 (m)$	1535 (m)
$\mathrm{d}N/\mathrm{d}t _0$	Extrapolation of elastic rate to $t=0$	4%	0.2%
$N_{ m el}$	Total elastic rate (correlated with extrapolation)	2%	0.1%
$N_{ m inel}$	Total inelastic rate (error dominated by Single Diffractive trigger losses)	1%	0.8%
$\varrho \equiv \Re A(t)/\Im A(t) _{t=0}$	External input , e.g. from COMPETE. Error contribution from $(1 + \varrho^2)$	1.2%	
	Total for $\sigma_{ m tot}$	5%	$1 \div 2\%$
	Total for ${\cal L}$	7%	2%

Sensitivity to Misalignment

• a simple (but instructive) example

• proton transport: $y_{\text{det}} = L_y \vartheta_y^* + v_y y^*$

• a Roman Pot in 220 m station displaced by 100 $\mu m \Rightarrow$ angular error $\Delta \vartheta$:

β* (m)	L_y (m)	$\Delta \vartheta \; (\mu \text{rad})$	beam divergence (μrad)
1535	272	0.36	0.3
90	264	0.38	2.4
2	18	5.5	15.8

 \Rightarrow 1535 m optics needs perfect alignment

Alignment Procedures

1) internal alignment (one Roman Pot level)

- track-based (Millepede-like) alignment
- whatever straight tracks: beam test, commissioning, etc.

2) station alignment – 2 aspects

- relative RP alignment within a station
- track-based using overlap
- alignment wrt. beam
 - physics processes: hit and angular distributions

3) global alignment (left-right)

- elastic tracks
- track-based alignment with *elastic* tracks

4) external information

- Beam Position Monitors can watch fast beam variations
- motor control very useful after calibration

Thank you for your attention

Optics

proton transport equation

$$x_{\text{det}} = L_x \bar{v}_x^* + v_x x^* + D\xi$$
$$y_{\text{det}} = L_y v_y^* + v_y y^*$$

 $\vartheta_{x,y}^*$ and x^*,y^* are angles and coordinates of a proton at IP, $\xi\equiv\Delta p/p$ is proton momentum loss

example: with the same sample of diffractive protons

Scenarios

low β^*

$$\beta^* = 0.5 \div 2 \text{ m}$$
, $\mathcal{L} \approx 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ early running: $p = 5 \text{ TeV}$, $\beta^* \sim 3 \text{ m}$

elastic acceptance
$$2 \leq |t/\text{GeV}^2| \leq 10$$

resolution
$$\sigma(\vartheta) \approx 15 \,\mu\mathrm{rad}$$

$$\sigma(\xi) \approx 1 \div 6 \cdot 10^{-3}$$

diffraction, $high \mid t \mid$ elastic scattering

$$\beta^* = 90 \text{ m}$$

$$\mathcal{L} \approx 10^{30} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

elastic acceptance
$$10^{-2} < |t_y/\text{GeV}^2| \lesssim 10$$

resolution
$$\sigma(\vartheta) \approx 1.7 \ \mu \mathrm{rad}$$
 $\sigma(\xi) \approx 6 \div 15 \cdot 10^{-3}$

all ξ seen, universal optics

diffraction, mid |t| elastic scattering, total cross section

$$\beta^* = 1535 \text{ m}$$

$$\mathcal{L} \approx 10^{28} \div 10^{29} \text{ cm}^{-2} \text{s}^{-1}$$

elastic acceptance
$$3 \cdot 10^{-3} < |t/\text{GeV}^2| < 0.5$$

resolution
$$\sigma(\vartheta) \approx 0.3 \ \mu \mathrm{rad}$$
 $\sigma(\xi) \approx 2 \div 10 \cdot 10^{-3}$

all ξ seen

total cross section, low |t| elastic scattering

Complication at β^* = 90 m: only t_y is measured

- $L_x \approx 0 \text{ m} \Rightarrow \text{only } t_y \text{ can practically be reconstructed} \Rightarrow d\sigma/dt_y \text{ measured instead of } d\sigma/dt$
- ullet transformation between p.d.fs. of random variables t, φ and t_y, φ

$$t_{y}(t,\varphi) = t \sin^{2} \varphi \Rightarrow$$

$$\Rightarrow \frac{d\sigma}{dt_{y}}(t_{y}) = \frac{2}{\pi} \int_{0}^{\pi/2} \frac{d\varphi}{\sin^{2} \varphi} \frac{d\sigma}{dt} \left(\frac{t_{y}}{\sin^{2} \varphi}\right)$$
(1)

• inverse transformation (consequence of azimuthal symmetry)

$$t = t_x + t_y, t_x = t\cos^2\varphi, t_y = t\sin^2\varphi$$

$$\frac{d\sigma}{dt_y} = \frac{d\sigma}{dt_x} \Rightarrow \frac{d\sigma}{dt}(t) \propto \int_t^0 du \, \frac{d\sigma}{dt_y}(u) \, \frac{d\sigma}{dt_y}(t - u)$$

- can be well adapted for discrete case of histograms
- cannot be used because information from low $|t_y|$ region is missing

SD extrapolation to low masses

ullet assuming $\mathrm{d}\sigma/\mathrm{d}M^2\propto 1/M^2$

