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Fly’s Eye  PRL 52 (1984) 1380

Fig. 1 An extensive air shower that survives all data cuts.  
The curve is a GaisserHillas

 

shower-development function: 
shower parameters E=1.3 EeV

 

and Xmax

 

=727 ± 33 g cm-2

 
give the best fit.
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airp
sim

obs
simk −= λ
λ

σinel
 

= k ·(14.5) / N ·λobs
 

= 2.411·104
 

/ λp-air [mb]p-air

exp exp
λ

 p-air
 

=λobs
 
⁄ k

The observed absorption length is affected by fluctuations in the 
longitudinal development of cascades  and in the detector response.
The   k parameter is  obtained from simulation and accounts 
for all fluctuations:

Fluctuations: k parameter
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EAS @ Max Development

h0

Fluctuation are lower if  showers at maximum  development are selected 

This technique connot
 

be applied by all ground based array experiments.

Once the primary CR energy (i.e. Xmax

 

), observation level (h0

 

) and angular range are
defined, also the part of the Xmax

 

distribution that can be used  is fixed.



Hadrons
E.M.
Low Energy  μ (Eμ > 1 GeV)
Atmospheric  Čerenkov lmaging
H.E. μ (E > 1.3 TeV) (MACRO & LVD)

EAS-TOP 1989-2000
Campo Imperatore 
2000 m a.s.l.    820 g.cm-2

1014

 

<E0 <1016
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Heavier Primaries

Helium
 

QGSJET II

ΦHe

 

≈2·Φp

He

p

systematic
 

uncertainty:
 

σsys
 

(He)= -29 mb
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inelσp-air = 338±21stat ±19syst - 29syst(He)
 

mb
PRD 72 (2009) 032004



High Altitude Cosmic Ray
Laboratory at YangBaJing

Longitude  90°
 

31’
 

50”
 

East
Latitude     30°

 
06’

 
38”

 
North

4300 m above
 

the sea
 

level
E0

 

≈
 

1012 eV
 

÷
 

1015GeV
610 g/cm2

ARGO-YBJ

Astrophysical 
Radiation 

Ground-based
Observatory @ 
YangBaJing

o

ARGO-YBJ collaboration
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HiRes
 

p-air cross section
 

at √s ≈
 

70 TeV

•
 

Fe is cut off by using the deeper  portion of 
the Xmax distribution;

•
 

He and gamma has to be taken into account;



HiRes
 

p-air cross section
 

at √s ≈
 

70 TeV

•• HiRes:HiRes:

•
 

Mean energy ~ 1018.5

 
eV;

Nuclear Physics B 151 (2006) 197

mbsyssysstatAirp
in )(26)(39)(14460 −+±=−σ



EAS-TOP: p-air            pp at √s ≈
 

2 TeV

E811 CDF

PRD 72 (2009) 032004



p-p total cross section



Conclusions



Conclusions



Conclusions



Conclusions

Auger


