Central Exclusive Production

CENTRAL EXCLUSIVE PRODUCTION: vector mesons, dijets, Higgs

J.R. Cudell

IFPA, Université de Liège

13th International Conference on Elastic & Diffractive Scattering, 2009

COLLABORATORS

Based on

- A. Bzdak, L. Motyka, L. Szymanowski and J. R. C., "Exclusive J/psi and Upsilon hadroproduction and the QCD odderon," Phys. Rev. D 75 (2007) 094023 [arXiv:hep-ph/0702134].
- J. R. C., A. Dechambre, O. F. Hernández and I. P. Ivanov,
 "Central exclusive production of dijets at hadronic colliders," Eur.
 Phys. J. C 61 369-390 (2009) [arXiv:0807.0600 [hep-ph]].

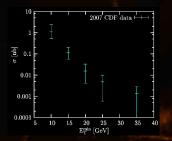
OUTLINE

- 1 INTEREST
- 2 INGREDIENTS
- **3** RESULTS FOR CDF
- **4** UNCERTAINTIES AND IR REGION
- 5 RESULTS FOR LHC
- 6 CONCLUSIONS

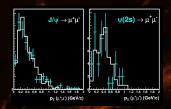
EXCLUSIVE PRODUCTION

Embedding of a hard process into pomeron exchange \rightarrow

- no underlying event
- little background if sharp resonance and measurement of the hadronic energy
- discovery tool for new physics decaying into hadrons


Production via odderon pomeron fusion \rightarrow

 discovery tool for the odderon



DATA: CDF RUN II

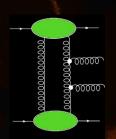
Exclusive dijets

Vector meson production

- *E_T* from 10 to 35 GeV
- σ = 1 nb to 1 pb
- M_{jj} up to 135 GeV $\approx M_H$

• $\frac{d\sigma}{dy}\Big|_{y=0}^{J/\psi} = (3.92 \pm 0.25 \pm 0.52) \text{ nb}$ • $\frac{d\sigma}{dy}\Big|_{y=0}^{\Psi(2s)} = (0.53 \pm 0.09 \pm 0.10) \text{ nb}$

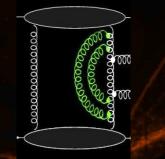
- Partonic singlet exchange:
 - $qq \rightarrow q + gg + q$
- Embed in hadrons:
 - $par{p}
 ightarrow p + gg + ar{p}$
- Large vertex corrections
- Large screening corrections
- Make jets:
 - $p\bar{p} \rightarrow p + JJ + \bar{p}$



Collins-Berera

- fully calculable
- exact kinematics in \perp plane
- $\sigma = \infty$ (IR divergence)

- Partonic singlet exchange:
 - $qq \rightarrow q + gg + q$
- Embed in hadrons:
 - m
 hoar p
 ightarrow m
 ho + gg + ar p
- Large vertex corrections
- Large screening corrections
- Make jets:
 - $p\bar{p} \rightarrow p + JJ + \bar{p}$



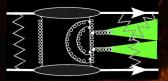
Cheng-Wu, Soper-Gunion

- regulates IR region
- changes the mass dependence
- $\sigma(E_T > 10 \text{ GeV}) \approx 600 \text{ nb}$

- Partonic singlet exchange:
 - $qq \rightarrow q + gg + q$
- Embed in hadrons:
 - $par{p}
 ightarrow p + gg + ar{p}$
- Large vertex corrections
- Large screening corrections
- Make jets:
 - $p\bar{p} \rightarrow p + JJ + \bar{p}$

Diakonov-Dokshitzer-Trojan, Kaidalov-Khoze-Martin-Ryskin

- very large correction
- double logs fully known
- upper scale $\sim E_T$
- $\sigma(E_T > 10 \text{ GeV}) \approx 25 \text{ nb}$


- Partonic singlet exchange:
 - $qq \rightarrow q + gg + q$
- Embed in hadrons:
 - $par{p}
 ightarrow p + gg + ar{p}$
- Large vertex corrections
- Large screening corrections
- Make jets:
 - $p\bar{p} \rightarrow p + JJ + \bar{p}$

- under control if jet production at small distances
- otherwise depends on unitarisation scheme
- $\sigma(E_T > 10 \text{ GeV}) \approx 3 \text{ nb}$

- Partonic singlet exchange:
 - $qq \rightarrow q + gg + q$
- Embed in hadrons:
 - $par{p}
 ightarrow p + gg + ar{p}$
- Large vertex corrections
- Large screening corrections
- Make jets:
 - $p\bar{p} \rightarrow p + JJ + \bar{p}$

Kaidalov-Khoze-Martin-Ryskin, Salam

several parametrisations
 σ(E_T > 10 GeV) ≈ 1 nb

- Partonic singlet exchange:
 - $qq \rightarrow q + H + q$
- Embed in hadrons:
 - $p\bar{p}
 ightarrow p + gg + \bar{p}$
- Large vertex corrections
- Large screening corrections
- Background: direct bb
 production

Bialas-Landshoff

similar to the dijet case as

is suppressed

- Partonic singlet exchange:
 - $qq \rightarrow q + H + q$
- Embed in hadrons:
 - $par{p}
 ightarrow p + gg + ar{p}$
- Large vertex
 corrections
- Large screening corrections
- Background: direct bb
 production

same as in dijet case \rightarrow important to measure dijets at the LHC

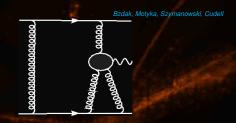
- Partonic singlet exchange:
 - $qq \rightarrow q + H + q$
- Embed in hadrons:
 - $p\bar{p}
 ightarrow p + gg + \bar{p}$
- Large vertex corrections
- Large screening corrections
- Background: direct bb
 production

Kaidalov-Khoze-Martin-Ryskin

- double logs and single logs known
- scale 0.62 M_H

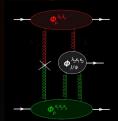
- Partonic singlet exchange:
 - $qq \rightarrow q + H + q$
- Embed in hadrons:
 - $p\bar{p}
 ightarrow p + gg + \bar{p}$
- Large vertex corrections
- Large screening corrections
- Background: direct bb
 production

similar to the dijet case



- Partonic singlet exchange:
 - $qq \rightarrow q + H + q$
- Embed in hadrons:
 - $p\bar{p}
 ightarrow p + gg + \bar{p}$
- Large vertex corrections
- Large screening corrections
- Background: direct bb
 production

small if Higgs narrow



- Partonic singlet exchange:
 - $qq \rightarrow q + J/\psi + q$
- Embed in hadrons:
 - $p\bar{p} \rightarrow p + gg + \bar{p}$
- Large screening corrections
- Background: photon-pomeron

- Partonic singlet exchange:
 - $qq \rightarrow q + J/\psi + q$
- Embed in hadrons:
 - $p\bar{p} \rightarrow p + gg + \bar{p}$
- Large screening corrections
- Background: photon-pomeron

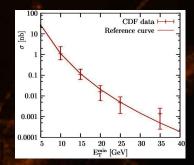
- pomeron side: same as in the dijet/higgs case
- odderon side: modelled by light-cone wave functions

Fukugita-Kwiecinski, Cudell-Nguyen

- Partonic singlet exchange:
 - $qq \rightarrow q + J/\psi + q$
- Embed in hadrons:
 - $p\bar{p} \rightarrow p + gg + \bar{p}$
- Large screening corrections
- Background: photon-pomeron

similar to the dijet case

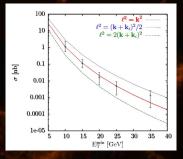
- Partonic singlet exchange:
 - $qq \rightarrow q + J/\psi + q$
- Embed in hadrons:
 - $p\bar{p} \rightarrow p + gg + \bar{p}$
- Large screening corrections
- Background: photon-pomeron



Results for CDF

DIJETS

	parameter	value	
hard	scale of α_S	sgg	
	۸ ⁽⁵⁾ 200 MeV		
Sudakov	scale of <i>a</i> _S loop momentum		
- 40	⊲ ordering	yes	
	terms	$\log^2 + \log_{+} constant$	
	lower scale	external off-shellness	
14	upper scale $k_T^2/2$		
impact factor	unitegrated	fitted to	
-	gluon density	F ₂	
gap survival	$\langle S^2 \rangle$ 15%		
splash-out	$E_T^{jets} / E_T^{partons}$ 0.8		



DIJETS

Many curves go through the data! For instance, change the lower scale in the Sudakov factor

HIGGS

σ_H< 0.03 fb

VECTOR MESONS

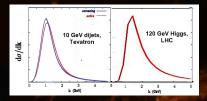
$\left. d\sigma/dy \right _{y=0}$	$J/\psi({\sf nb})$		r(pb)	
J.	odderon	photon	odderon	photon
Tevatron	0.3-5	0.7-9	0.7-15	0.8-9

Odderon/photon=

- 30-60% for J/Ψ
- 80-170% for ↑
- The J/Ψ and Ψ' data are consistent with photon exchange
- The odderon signal could be enhanced by a t cut

Central Exclusive Production Uncertainties and IR region

Central Exclusive Production Uncertainties and IR region


UNCERTAINTIES

parameter	uncertainty (highest/lowest)		
and a	Jets	Higgs	J/ψ
Sudakov	20	7	≈ 1
Impact factor	3	3	>3
Gap survival	3	3	3
Splash-out	2	12	
Total	\sim 200	~ 60	~ 10

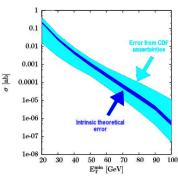
GLUON MOMENTUM DISTRIBUTION

Only 30-50% of the cross section comes from the phase-space region with all off-shellnesses > 1 GeV.

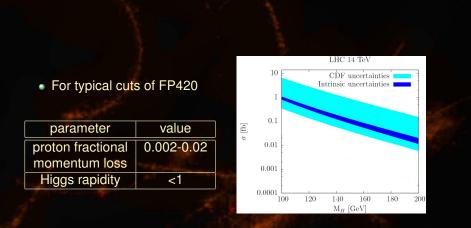
The calculation is tentative at best !

→use CDF data to constrain the predictions

Results for the LHC



LHC DIJETS


One can predict the jet LHC cross section using the CDF result to calibrate it

 For typical cuts of FP420

parameter	value
proton fractional	0.002-0.02
momentum loss	2.3
jet rapidity	<1
mass of jet	>50 GeV
system	

LHC HIGGS

VECTOR MESONS

Worse than at the Tevatron!

$\left. \left. d\sigma/dy \right _{y=0} \right.$	$J/\psi({\sf nb})$		$f/dy _{y=0}$ $J/\psi(nb)$ $\Upsilon(pb)$		ob)
and the second second	odderon	photon	odderon	photon	
	0.3-4	2.4-27	1.7-21	5-55	

Odderon/photon=

- 6-15% for J/Ψ
- 15-40% for ↑

CONCLUSIONS

NEW MYTHS	NEW REALITY
THE CALCULATION IS PERTURBATIVE	$k \approx 0.8 - 1.5 \mathrm{GeV}$
THE UNCERTAINTIES OF THE	FACTOR 10-200
CALCULATION ARE SMALL	1.1

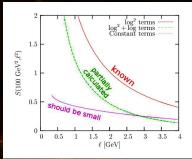
importance of CDF data to test theoretical ideas

 σ_{Higgs} < 2 fb for M_H = 120 GeV

 σ_{jj} at the LHC could further constrain the Higgs cross section odderon signal \approx 15-40 % at LHC, 30-170 % at Tevatron, better in Υ

APPENDIX: EXTRA TRANSPARENCIES

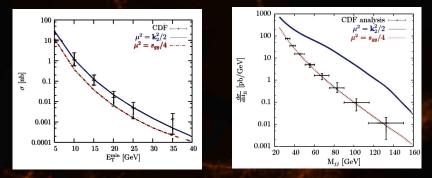
EXAMPLE: SUDAKOV FORM FACTOR


$$T(\mu^2, \ell^2) = \exp\left[-S(\mu^2, \ell^2)\right], \quad S(\mu^2, \ell^2) = \int_{\ell^2}^{\mu^2} \frac{d\mathbf{q}^2}{\mathbf{q}^2} \frac{\alpha_s(\mathbf{q}^2)}{2\pi} \int_0^{1-\Delta} dz \left[zP_{gg} + N_f P_{gq}\right]$$

Trick: virtual corrections \sim 1-brehmstrahlung

- true for log²
- true for some log

 not true for constant terms



CONSEQUENCES

Two curves fitting the E_T distribution

can produce very different mass distributions

The ExHuMe Monte-Carlo used to analyse the data takes $\mu^2 = s_{gg}/2.62$.

