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Cryogenic Engineering
CERN, March 8 - 12, 2004

» Temperature reduction by throttling
and mixing

» Temperature reduction by work
extraction

- Refrigeration cycles: Efficiency,
compressors, helium, hydrogen

* Cooling of devices
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Mankind had an intellectual difficulty with the production
of refrigeration: We could not learn it from nature.

The problem: One has to add energy to remove energy.
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Where should the outside
power be applied

Qab=QO+P

warm

cold

Q,
Solution: One needs an

additional sytem: The
refrigerator
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Widen the low-temperature end of the cycle as shown in the T-S diagram
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Compressor and Aftercooler

* Purpose: Increase the pressure and
reduce entropy

» Types of compressors

* Volumetric compressors:
piston, screw

* Turbocompressors
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Piston compressor

Qilfree labyrinth piston
compressors. Preferred
by CERN until about 1980.
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Screw Compressor

Oil flooded screw
compressor preferred
at CERN since about 1985.
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Screw compressor principle
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Screw Compressor Installation
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Fig. 2 Low Temperature Options
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Fig. 3 Cold Compressor diagram [3]
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Co@npresser Cartridges of 2.4 kW @ 1.8 K Refrigerat)@its
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Compression
Flow (variable)
P out (7ixed) P inter | Stall line
N3 Volumetric
Volumetric
Choke line

P inter

Hydrodynamic
P in (fixed)

Flow

For fixed overall inlet & outlet conditions, coupling of the two machines
via P inter maintains the operating point in the allowed range
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How to evaluate efficiency and to identity

, , losses
When discussing expanders, we shortly talked

about reversibility

» In power engineering there is always a best
method to do something, i. e. ho unnecessary
losses = reversibility

Losses can be idebtified by the deviation from
reversibility

»+ Comparison is the input power

We have to give refrigeration a value in the scale
of the input power

Carnot ratio
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The definition of exergy

* Minimum amount of work to produce
refrigeration

Exergy= Mimimum Power= Q*(T,-T,)/ T,

* Minimum amount of power to change the
state of a fluid from an initial state 1 to a
final state 2:

e,-e; = hy-hy + T *(s,-3:)
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Specific exergy of cold copper and helium
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Stored exergy in the cooled-down LHC

Mass Specific Exergy | Stored Exergy

(tons) (MJ/kg) (G))
Helium 96 6.8 660
Metal 36.000 0.065 2.340
Total 3.000
Magnetic 10
energy
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* Helium is recovered from natural gas
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1999 Helium World Production
(Estimated by U.S. Geological Survey)

Produced | Liquefied |Shipmen| Shipments
10° 10° Nm’/year | tsper | per week
Nm’/year year
United States 118,0 69,0 | 2450 49
(export 29,3)
Algeria 16,0 16,0 550 11
Russia 4.2 4,2 150
Poland 1,4 1,4 50 1
Total 139,6 90,6 3200 64
(15.000 1/h)
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C.O.P. of Large Cryogenic Helium Refrigerators
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Joule-Thomson Wet Expander JT - Turbine Double JT - Turbine Triple JT -Turbine
Collins (ca. 1965) FNAL 1975 DESY HERA 1985 CERN LEP 1990
Efficiency (%) 18 23 23 28 30
COP (W, /W) 370 290 290 240 224

Fig. 4 Development of the Joule-Thomson Stage of Large Helium Refrigerators
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Table 1 Cryogenic Accelerator and Fusion Projects

Project Location Capacity No. | Refr. below 4.4 K Status
(kW at4.4K) | Refr
Accelerators
Tevatron Fermilab 30 2+12 1.2kW at3.6 K | operation
RHIC Brookhaven 25 operation
HERA DESY 30 3 4kWat3.7K operation
CEBAF TINAF 12 SkWat2.0K operation
LEP CERN 72 4 stopped
S-DALINAC | Darmstadt 0.4 0.1 kW at2.0K |operation
ELBE Rossendorf 0.6 0.2kW at 1.8 K | operation
LHC CERN 144 8 2.4kW at 1.8 K | construction
Oak Ridge 12 SkWat2.0K construction
TESLA DESY 140 7 SkWat2.0K adv. planning
RIA [1] Argonne 30 8.6 kW at2.0 K |early planning
SIS 100+200 GSI Darmstadt 20 ? early planning
SASE-FEL BESSY 12 3.6kWat 1.8 K |early planning
Fusion
MFTF Livermore 12 2 stopped
JET Culham 1.5 2 0.6 kW at 3.8 K | operation
Tore Supra Cadarache 2 0.3kWat1.75 K |operation
TOSKA Karlsruhe 3 2kWat3.7K operation
LHD Toki 8 operation
Wendelstein Greifswald 4 3kWat35K construction
SST-1 India 1 construction
KSTAR Korea 10 construction
ITER ? 120 planning
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History of use of liquid hydrogen
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BEBC (Big European Bubble Chamber at CERN)
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Liquid Hydrogen Fuelled Car
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;Wasserstoff-Kom etenz-
Zentrum Berlin
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Liquid hydrogen tank in car
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Future Large Scale Hydrogen Liquefier
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