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The goal of these lectures will be to describe the complexity of
dynamical systems, the theoretical concepts which were
developed to estimate quantitatively this complexity and some of
the techniques/algorithms to measure these quantities.

Complexity is still a rather vague notion (with hot debates about
a rigorous definition) and | will limit to the discussion of
dynamical systems although there are some attempts to discuss
complexity in other situations (noticeably in large networks). The
notions and concepts | will discuss are sufficiently general to
apply or at least inspire the study of other situations.

Virtually every model of Physical phenomena is a dynamical
system, often a Hamiltonian system (with friction).

Typical questions of Physical interest concern long time
behaviour (stationary states).



We will only discuss classical systems. Quantum chaos is
another rather different subject.

We will also restrict to systems with a small number of degrees
of freedom excited.

This does not mean that the system has a small number of
degrees of freedom, it may have infinitely many.

This notion of number of degrees of freedom excited will be
clarified later on.

The case of many degrees of freedom excited is still in its
iInfancy although some ideas can be borrowed from the study of
the simple case. The study of networks for example is a very
active subject.



A short introduction to dynamical systems.
Statistical approach to chaos.

Sensitive Dependence on Initial Conditions,
Lyapunov Exponents.

Reconstruction of Attractors from Time Series.

Dimension of Attractors.
Entropies.

Forecasting and Noise Reduction.



| will as much as possible respect the following order:
First present the concept and the associated general results.
Show some concrete examples.

Present some of the simplest algorithms used to apply the
concept.

A general remark:

In applications, we will not be dealing with just any time series
(signal) but with one coming from a dynamical system with few
degrees of freedom excited. This leads to constraints which can
be exploited in various ways. Of course this may be a too strong
hypothesis on the data.



A short introduction to dynamical
systems.

We start by recalling some general facts and definitions about
dynamical systems.
A dynamical system is given by two objects.

The first one is its phase space Q also (called state space)
which is the set of all the possible states of the system.

The second object is the time evolution that may come in two
different flavors.

A discrete time evolution, thatisto say amap T from Q to itself
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A continuous time evolution given by a vector field Y (y) on the
phase space, or in other words by a system of coupled first
order differential equations

dy__,
gt =Y(y).

One can also give the time evolution flow, that is to say the
family (¢;) of transformations of Q which transform the initial
condition (state) to the value of the solution (state of the system)

attime t (Y(t) = ¢;(¥(0))).



The vector (field) Y () and the mapping T may depend on

parameters (very useful), they may depend on time (non
autonomous systems).

There are also systems with memory (retarded) which are more
complicated (their phase space is infinite dimensional).



Example of a discrete dynamical systems.

The “simplest” chaotic map:
Phase space Q = (0,1}, T(x) =2x mod (1).

The “logistic map™
Phase space Q = [0,1], T(X) = 4x(1—Xx).

The one parameter family of quadratic maps:

Phase space Q = (0,1}, T,(X) = ux(1—x), 0 < u < 4.



Example of a discrete dynamical system : the Hénon map.

Phase space Q = R?,

X 1—ax?+y
Ta,b — b
Yy X

Historical values a= 1.4, b=0.3.
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Attractor of the Hénon map.
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Example of a continuous time dynamical system: The Lorenz
system. Phase space Q = R3

q X —O0X+ 0oy
o y | =] —Xxz+rx—y
Z Xy — bz

Historical values: 0 =10, r =28, b=8/3.

I -p.12



The Lorenz attractor.
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An important example: Hamiltonian mechanics.

The phase space is R?" (or a manifold), n is the number of
degrees of freedom. The coordinates are (q, p).

The equations of motion are

da;
dt

dp, .
= dp H d—tJ:—aqu (j=1...n).
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From continuous time to discrete time:

Sampling. In periodically forced systems it is useful to sample
at a frequency equal to the forcing frequency: stroboscope. In
general for a continuous time evolution one can use the time one
map of the flow ¢,.

Poincaré section (section at the maximum of an observable
etc).
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Poincaré section close to a cycle.
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For a discrete time dynamical system, a compact (bounded)
Invariant set .o C Q Is attracting if there is a neighborhood V of
27/ such that for any open set U containing .7, there is an integer
N > 0 ( depending of V and U) such that for any n > N,

T"(V) CU.

In other words, initial conditions close to .27 give rise to orbits
which accumulate on 7.
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Invariant neighborhood for the Hénon map.
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An attractor is an attracting set with irreducibility (minimality)
property (dense orbit).

The largest neighborhood V in the above definition is called the
basin of the attracting set. In a same phase space several
attractors can coexist, together with repellers and invariant sets
which are neither attractors nor repellers.

The concept of attractor is suited for the study of dissipative
systems. Volume preserving systems do not have attractors, like
the mechanical systems without friction.
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Attractors can be complicated (strange, fractal...) like in the
Hénon map or the Lorenz system.

The simplest attractors are the stable fixed points (stationary
solutions) and the stable periodic orbits (stable invariant cycles).

If the dynamical system depends on a parameter, the attractor
may depend on the parameter in a very complex manner. This
occurs for the attractor of the quadratic family x — pux(1—x).
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A dynamical system may have several attractors in the same
phase space.

Each attractor has its own basin: the set of initial conditions
attracted by this attractor.

The boundaries of the basins are in general complicated
Invariant sets, repelling transversally (towards the attractors).
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A well known example is provided by the Newton method
applied to the equation Z2=1. z, ; = f(z,) = (z.+2/7)/3. There
are three stable fixed points (attractors): 1,j,]j.
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Change of variables.

For discrete time, if x,, ; = f(X»), and y = g(x) with g invertible
(not necessarily linear), y, = g(x,) satisfies y,,, ; = h(yn) with
h=gofog™.

For continuous time, if X(t) satisfies dx/dt = X(X) and y = g(X)
with g invertible (not necessarily linear), then y(t) = g(X(t))
satisfies dy/dt = Y (y) with

Y(¥) = Dgy 15, X (97(9)
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