
SDIC and Lyapunov exponents.
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One the two ingredients for chaotic behaviour is the sensitive
dependence to initial conditions (SDIC).
Two nearby initial conditions in generic position give rise to
trajectories which separate with time. In other words, small
(generic) errors are amplified. This can be illustrated on the
Lorenz dynamical system.
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initial condition (−.84,−13.17,17.04)
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This is the well known butterfly effect of E.Lorenz.
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The second ingredient for chaos is the boundedness of phase
space. If two trajectories confined in a bounded domain
separate in time, their distance should reach the diameter of the
domain. By that time the nonlinearities are not negligible
anymore and the trajectories are folded. Eventually they may
come back near to one another at a later time. We will come
back to this global effect later on.

This argument does not work for linear time evolution that does
not lead to chaotic behaviour and will not be considered
anymore.
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How to quantify SDIC (the amplification of small errors?)

Let x0 and y0 be two nearby initial conditions: y0 = x0 +~h,~h small.
By Taylor’s formula we have

y1 = T
(

y0

)

= T
(

x0 +~h
)

= T
(

x0

)

+DTx0
~h+O

(

~h2)

where DTx is the differential of T at x, namely the matrix of
partial derivatives.
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More generally, as long as the two trajectories stay nearby, i.e.
up to a time n not too large, one can write

yn = T n(y0) = T n(x0 +~h) = xn +DT n
x0

~h+O
(

~h2) .

The initial small error~h is amplified by the “factor” DT n
x0

and we
will study its growth in n for n large.

One should be careful here about the order of limits.
One first let~h tend to 0 then n to infinity.
The two trajectories must stay close at least up to time n,
otherwise Taylor’s formula may not apply anymore (and the
result may be very different).

We will now discuss the behaviour of DT n
x0

in several cases of
increasing generality (and complexity).
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First (easy) case: dimension one, the phase space is an interval
([-1,1]).

f n(x+h) = f n(x)+ f n′(x)h+O(h2) .

By the chain rule ( f n = f ◦ f ◦ · · · ◦ f , n times), we have

f n′(x) =
n−1

∏
j=0

f ′
(

f j(x)
)

.

This naturally suggests an exponential growth in n, and we look
for the exponential growth rate per unit of time:

1
n

log
∣

∣ f n′(x)
∣

∣=
1
n

n−1

∑
j=0

log | f ′
(

f j(x)
)∣

∣ .
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We see appearing a temporal average and we can apply
Birkhoff’s ergodic Theorem.

Let µ be an ergodic invariant measure such that the function
log
∣

∣ f ′
∣

∣ has an integrable modulus. Then except on a set of µ
measure zero, we have convergence of the temporal average,
and moreover

lim
n→∞

1
n

log
∣

∣ f n′(x)
∣

∣=
∫

log
∣

∣ f ′(·)
∣

∣dµ .

This number is called the Lyapunov exponent of the measure µ
for the transformation f .
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Here one should stress again the importance of the initial
condition.

There are many initial conditions for which the limit does not
exist.

For many other initial conditions, the limit exists, but take
another value. For example for the initial conditions typical of a
different ergodic measure.
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Example : Ω = [0,1]

T (x) =

{

3x if 0 ≤ x < 1/3

3(1− x)/2 if 1/3 ≤ x ≤ 1.
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Ω = [0,1]

T (x) =

{

3x if 0 ≤ x < 1/3

3(1− x)/2 if 1/3 ≤ x ≤ 1.

The Lebesgue measure is T invariant and ergodic. Its Lyapunov
exponent is given by

1
3

log3+
2
3

log(3/2) .

The transformation T has a fixed point x = 3/5. The Dirac
measure in this point is also invariant and ergodic. Its Lyapunov
exponent is log(3/2).
There is an uncountable set of invariant ergodic measures, all
with different Lyapunov exponents (taking all the values between
log3/2 and log3).

II – p.10



Lyapunov exponents depend in general of the parameters. For
example for the one parameter family of maps x → 1−µx2 (with
phase space [−1,1] and 0 ≤ µ ≤ 2)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
−1.8

−1.4

−1.0

−0.6
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0.2

0.6
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Next level of difficulty: dimension larger than one.

A simple example: the dissipative baker’s map. The phase
space is the unit square [0,1]× [0,1]. The map is given by

T (x,y) =

{

(3x,y/4) if 0 ≤ x < 1/3

(3(x−1/3)/2,(2+ y)/3) if 1/3 ≤ x ≤ 1.
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The attractor is a strange set: product of a segment by a Cantor
set. The SRB measure is the product of the Lebesgue measure
along the segment by a Cantor measure.
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The differential is given by

DT(x,y) =

{

( 3 0
0 1/4

)

if 0 ≤ x < 1/3
( 3/2 0

0 −1/3

)

if 1/3 ≤ x ≤ 1.

To estimate DT n
(x,y) we now have to perform a product of

matrices. If we start from the initial point (x,y), with an initial
error~h, we have after n iteration steps (using the chain rule) an
error given by

DT n
(x,y)

~h = DTT n−1(x,y)DTT n−2(x,y) · · ·DT(x,y)
~h .

In general matrices do not commute (hence one should be
careful with the order in the product). However here they
commute (and they are even diagonal).
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Therefore, to obtain the product matrix, it is enough to take the
product of the diagonal elements:

DTT n−1(x,y)DTT n−2(x,y) · · ·DT(x,y) =

(

∏n−1
j=0 u

(

T j(x,y)
)

0

0 ∏n−1
j=0 v

(

T j(x,y)
)

)

where
u(x,y) = 3χ[0,1/3](x)+(3/2)χ[1/3,1](x)

and
v(x,y) = (1/4)χ[0,1/3](x)− (1/3)χ[1/3,1](x) .

We can now take the log of the absolute value of each diagonal
entry of the product and apply Birkhoff’s ergodic theorem as in
the one dimensional case.
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Since the functions u and v do not depend on y, the integral with
respect to the SRB measure reduces to the integration with
respect to the one dimensional Lebesgue measure. Therefore,
for Lebesgue almost any (x,y) (two dimensional Lebesgue
measure, recall the definition of SRB)

lim
n→∞

1
n

n−1

∑
j=0

log
∣

∣u
(

T j(x,y)
∣

∣= (1/3) log3+(2/3) log(3/2)

= log
(

(27/4)1/3
)

.

Similarly

lim
n→∞

1
n

n−1

∑
j=0

log
∣

∣v
(

T j(x,y)
∣

∣= −(1/3) log4− (2/3) log(3)

= log
(

(36)−1/3
)

.
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Conclusion :

DTT n−1(x,y)DTT n−2(x,y) · · ·DT(x,y) ≈

(

(27/4)n/3 0

0 (36)−n/3

)

.

We now have to interpret this result.

If we take a vector~h =
(

h1,h2

)

, such that h1 6= 0, we see that the

first component of DT n
(x,y)

~h grows exponentially fast with growth

rate log
(

(27/4)1/3
)

, and this component dominates the other one

which decreases exponentially fast at the rate log
(

36−1/3
)

(< 0).

In other words, almost any error grows exponentially fast with
rate log

(

(27/4)1/3
)

, this is the maximal Lyapunov exponent.

But there is another Lyapunov exponent log
(

36−1/3
)

(< 0)
corresponding to special initial errors satisfying h1 = 0. These
errors do not grow but decay exponentially fast.
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This is similar to the diagonalization of matrices but the
interpretation is slightly more involved.

We have to distinguish two subspaces. The first one is the entire
space E0 = R2. The second one is the subspace of codimension
one E1 =

{

(0,h2)
}

⊂ E0.

If~h ∈ E0\E1 the initial error grows exponentially fast with rate

log
((

27/4
)1/3)

.

If~h ∈ E1 the initial error decreases exponentially fast with rate
log
(

36−1/3
)

.
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Positive Lyapunov exponents are obviously responsible for the
Sensitive Dependence on Initial Conditions. Their corresponding
“eigen” directions are tangent to the attractor.

Transversally to the attractor one gets contracting directions,
namely negative Lyapunov exponents. In some cases the
attractor can also contain directions of negative Lyapunov
exponents.

This is a local picture, we will discuss later on a more global
picture.
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The general case combines the two preceding ideas (product of
matrices and ergodic theorem) together with a new fact: the
subspaces E0, E1, etc. depend on the initial condition: they vary
from point to point.

Moreover the matrices appearing in the product do not commute
(be careful with the order).

One has to use a more sophisticated version of the ergodic
theorem called the sub-additive ergodic theorem.

We are only interested in the size of the vector DT n
x0

~h. It is
convenient to look at the size of its square norm

〈

DT n
x0

~h
∣

∣DT n
x0

~h
〉

=
〈

~h
∣

∣

(

DT n
x0

)t
DT n

x0

~h
〉

.

The result can be formulated in terms of the asymptotic
behaviour of the matrix

(

DT n
x0

)t
DT n

x0
.
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The Oseledec theorem.

Let µ be an ergodic invariant measure. For µ almost any initial
condition x0, the sequence of (positive) matrices

(

(

DT n
x0

)t
DT n

x0

)1/2n

converges to a matrix Λ symmetrical and positive.

The logarithms of the (different) eigenvalues of Λ denoted by
λ0 > λ1 > · · · > λk are called the Lyapunov exponents (Lyapunov
spectrum). Of course some eigenvalues can occur with
multiplicity larger than one.

The Lyapunov exponents are invariant by (invertible and regular)
changes of variables.
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Second part of The Oseledec theorem.
Except on a set of points x in the phase space of µ measure
zero, there exists a decreasing sequence of sub vector spaces

E0(x) ) E1(x) ) · · · ) Ek(x)

with the following properties.

E0(x) is the entire space.

DTxEm(x) = Em
(

T (x)
)

If~h ∈ Em(x)\Em+1(x) then

lim
n→∞

1
n

log
∥

∥DT n
x
~h
∥

∥= λm .

This looks somewhat like the decomposition in Jordan blocks.
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Remarks
The theorem says

∥

∥DT n
x
~h
∥

∥≈ enλm

only in a logarithmic sense. There can be a very large (or very
small) sub-exponential prefactor which depends on n, x and~h.
These prefactors play an important role in some finer questions.

The rate of convergence is in general unknown.
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How to determine the Lyapunov exponents?

Three difficulties.

• Compute
(

Mt
nMn

)1/2n
with

Mn = AnAn−1 · · ·A1

where the matrices Am do not commute.

• If the phase space is known but not the transformation, one
has to estimate An = DTxn−1

.

• Reconstruct the phase space if it is unknown.

We will deal with these problems one after the other, the last one
in the next lecture.
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There are also several numerical difficulties. One would like to
take n as large as possible to get a better statistics. However,
when performing the multiplication of the matrices AnAn−1 · · ·A1

one gets exponentially growing quantities. This problem is
solved by summing logarithms, not by computing products.

In general the data consists of only one (hopefully typical)
trajectory of given fixed length.

Some experimental or numerical noise is often present.
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A simpler problem is to determine the largest exponent (test of
chaos: SDIC).

Two generic, close, initial conditions separate exponentially fast
with this exponential rate.

A concrete algorithm consists in fixing a small number ε > 0 and
to compute for τ integer the quantity

LN(τ ,ε ,x) =

1
N − τ −1

N−τ

∑
j=0

log







1
∣

∣Uε
(

T j(x)
)∣

∣

∑
y∈Uε

(

T j(x)
)

‖T j+τ(x)−T τ(y)‖







where Uε
(

T j(x)
)

is the set of points of the orbit of x at a distance
less than ε of T j(x).
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The idea is that each term is of order exp(λmaxτ). For τ large
enough, one expects a linear growth.

But this linear growth should saturate when ε exp(λmaxτ) is of the
order of the size of the attractor.

The summation over the neighboring points should eliminate the
fluctuations.

One plots the curve L(τ) for various values of ε to see if there is
a zone with constant slope.
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Maximum exponent for the Hénon map, original values of the
parameters.
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How to compute the logarithm of the eigenvalues

of
(

Mt
nMn

)1/2n
.

The first problem is not to loose too much precision and
computer time for large n. The problem gets even more difficult if
there are many exponents.

There are several efficient algorithms to compute
(

Mt
nMn

)

.

One is based on the QR method.

Any (real) matrix can be written as a product QR with Q
orthogonal (and real) and R upper triangular (and real).
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If Mn = QnRn, there are two real orthogonal matrices Un et Vn

such that Rn = UnDnVn with Dn a real diagonal matrix with the
same diagonal elements as Rn. (This gives the singular value
decomposition of Mn).

Then Mt
nMn = V t

nD2
nVn, hence

(

Mt
nMn

)1/2n
= V t

nD2/2n
n Vn = V t

nD1/n
n Vn .

The Lyapunov exponents are (approximated by) the logarithms
of the diagonal elements of Dn divided by n.

From a computational point of view, Mn+1 = An+1Mn = An+1QnRn.
One performs the QR decomposition of the matrix
An+1Qn = Qn+1Wn and then Rn+1 = WnRn.

In practice, it is enough to keep only the orthogonal matrix Qn

and to accumulate the logarithms of the diagonal elements of
Wn.
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Example of the Hénon map (original values).
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Estimation of DTx.
Quite often one does not know DTx explicitly. A notable
exception is in numerical computations. Therefore one has to
determine this matrix form the data.

An experimental problem (and a little bit numerical also) is that
the data are noisy. In other words, instead of having the
sequence of points x1, x2, · · · , xn from an orbit in phase space,
(namely T (x j) = x j+1), one has measured

y j = x j + ε j ,

ε j small (hopefully), random (not always).

In general one assumes that the noises (ε j) form a stationary
sequence of independent Gaussian random variables. It is
always a good idea to try to verify these hypothesis using some
statistical tests.
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To get an approximation of DTx one uses Taylor’s formula.
Consider a small neighborhood Ux of x (often a ball).

If a point xl of an orbit falls in Ux, we have by the Taylor formula

T (xl) = T (x)+DTx
(

xl − x
)

+O
(

(xl − x)2
)

.

If we neglect the quadratic correction, the transformation T is
affine in Ux (a translation plus a linear transformation). In
dimension d it is therefore given by d2 +d parameters (T (x) and
the matrix DTx). It suffices to have enough points in the
neighborhood Ux to determine these parameters.
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In the presence of noise

T (xl) = T (x)+DTx
(

xl − x
)

− εl +O
(

(xl − x)2
)

.

If we neglect the quadratic term in Taylor’s formula, we have to
determine an affine transformation in the presence of noise.
This is a classical problem which can be solved for example by a
least square method.

In other words, one computes

argminA ∑
x j∈Ux

∥

∥T (x j)−T (x)−A(x j − x)
∥

∥

2
.

A gives (the approximation of) DTx. In general, x is a point on the
orbit.
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Some remarks.

The choice of the neighborhood Ux is delicate. There are two
opposite conditions.

• The neighborhood should be small enough so that the affine
approximation is good. Some authors proposed to use quadratic
corrections but the computation becomes heavier.

If the neighborhood is too big, the non linearities are not
negligible anymore. Fake exponents appear which are multiple
of the true ones. Hence in the presence of exponents which are
multiple of others one should change the size of the
neighborhood to check if the relation still holds.

• One wants to take the neighborhood large enough to have
many points inside and get a good statistics in the noise
elimination (least square).
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If the map is invertible, the inverse transform has the opposite
exponents (for the same invariant measure).

If the map T is volume preserving, that is to say det
(

DTx
)

= 1,
the sum of the exponents is zero. This generalizes immediately
to the case of constant determinant of DTx as in the Hénon map.

For the symplectic transformations (as in mechanical systems),
if λ is a Lyapunov exponent, −λ is also a Lyapunov exponent
with the same multiplicity.

For the continuous time one can perform a discrete time
sampling (often delivered by the experimental observation) and
use the discrete time algorithms.
There is also a continuous time versions of the QR method.
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