

Urs Achim Wiedemann, Physics Department, CERN, Theory Division

Summary of Lecture 1

- Minimum Bias Multiplicity Distribution:
 - shape determined by nuclear geometry
 - a robust centrality measure

- Particle Production with respect to the reaction plane
 - large asymmetry at RHIC (80 % more particles in plane)
 - signal of collectivity
 - if hydrodynamical description applies then elliptic flow gives access to the QCD equation of state

Lecture 2:

<u>Hadron Thermodynamics</u> <u>Concepts, Applications and Limitations</u>

- a. Hadronic Particle Ratios
 - Hagedorn's limiting temperature and the QCD phase transition
 - The model of statistical hadronization
 - Thermal deviations from a grand canonical description
- b. Low-pt Hadronic Spectra
 - Models combining hydrodynamics and statistical hadronization
 - Deviations at intermediate pt

The Run 1 Observable at RHIC and LHC

• Hadrochemistry of particle ratios

Aim: understand the framework in which these data are discussed currently

Hadron Thermodynamics

• Ideal gas of identical neutral scalar particles of mass m_0 in box V characterized by grand canonical partition function (Boltzmann statistics)

$$Z(T,V) = \sum_{N} \frac{1}{N!} \left[\frac{V}{(2\pi)^3} \int d^3 p \exp(-\sqrt{p^2 + m_0^2}/T) \right]^N \longrightarrow \ln Z(T,V) = \frac{VT m_0^2}{2\pi^2} K_2\left(\frac{m_0}{T}\right)$$

• For $T \gg m_0$, energy density and particle density are

$$\epsilon(T) = \frac{1}{V} \frac{\partial \ln Z(T, V)}{\partial (1/T)} \simeq \frac{3}{\pi} T^4 \qquad n(T) = \frac{\partial \ln Z(T, V)}{\partial V} \simeq \frac{1}{\pi} T^3 \qquad \frac{\epsilon(T)}{n(T)} \simeq 3T$$

• Now include resonance formation: hadron resonance gas

$$\ln Z(T, V) = \sum_{i} \frac{VT m_i^2}{2 \pi^2} \rho(m_i) K_2\left(\frac{m_i}{T}\right)$$

Hadron dynamics enters only via the density of resonance states $\rho(m_i)$

What is
$$\rho(m_i)$$
 ?

Hagedorn's Statistical Bootstrap Model

<u>Bootstrap hypothesis:</u> (self-similarity of a hadronic resonance gas) if a Hadron gas is compressed to the volume of a hadron, V_c , then is just another massive hadronic resonance in $\rho(m)$ (Hagedorn: fireballs consist of fireballs, which consist of fireballs ...)

$$\rho(m = \sqrt{p^2}) = \delta(m - m_0) + \sum_{N} \frac{1}{N!} \frac{V_c^{N-1}}{(2\pi)^{3(N-1)}} \int \prod_{i=1}^{N} \left[dm_i \rho(m_i) d^3 p_i \right] \delta^{(4)} \left(p - \sum_i p_i \right)$$

Nahm's Solution of the Statistical Bootstrap Model

• Statistical Bootstrap Model defined by:

$$\rho(m = \sqrt{p^2}) = \delta(m - m_0) + \sum_{N} \frac{1}{N!} \frac{V_c^{N-1}}{(2\pi)^{3(N-1)}} \int \prod_{i=1}^{N} \left[dm_i \rho(m_i) d^3 p_i \right] \delta^{(4)} \left(p - \sum_i p_i \right)$$

• Nahm's analytical solution:

$$\rho(m, V_c) = \frac{const.}{m^3} \exp\left[\frac{m}{T_H}\right]$$
$$\frac{V_c T_H^3}{2 \pi^2} (m_0 / T_H)^2 K_2 (m_0 / T_H) = 2 \ln(2) - 1$$

• Hagedorn temperature T_{H} (determined by range of strong interactions):

→ Hagedorn's estimate:
$$m_0 = m_\pi$$
, $V_c = \frac{4\pi}{3} m_\pi^{-3}$
→ $T_H \approx 150 \, MeV$
→ Chiral limit: $m_0 \rightarrow 0$, $T_H = \left[\pi^2 (2 \ln 2 - 1)\right]^{1/3} V_c^{-1/3}$, $V_c = \frac{4\pi}{3} r_h^3$, $r_h \sim 1 \, fm$
T ≈ 200 MeV

The Exponential Hadron Mass Spectrum

• Experimental lines include Gaussian smoothing, $\sigma_m = \Gamma_m/2 \sim 200 MeV$

$$\rho(m) = \sum_{\overline{m} = m_{\pi}, m_{\rho}, \dots} \frac{g_{\overline{m}}}{\sqrt{2 \pi \sigma_{\overline{m}}}} \exp\left[\frac{-(m - \overline{m})^2}{2 \sigma_{\overline{m}}^2}\right]$$

Interpretation of the Hagedorn Temperature

• Insert Nahm's solution into gc partition function for hadron gas

$$\ln Z(T,V) \simeq \frac{VT}{2\pi^2} \int dm \, m^2 \, \rho(m) K_2(m/T)$$
$$\sim V \frac{T^{3/2}}{(2\pi)^{3/2}} \int dm \, m^{-3/2} \exp\left[-m\left(\frac{1}{T} - \frac{1}{T_H}\right)\right]$$

Cabibbo and Parisi observe: $\ln Z(T, V)$ does not diverge at $T = T_H$ but its derivates do diverge. This signals a phase transition.

 T_{H} ultimate temperature of hadronic matter.

• For $T \to T_H$

- momenta of the resonances in the gas do not increase
- heavier and heavier resonances appear (infinitely many at $T_{\rm H}$)
- For $T > T_H$
 - inconsistent with a gas of hadronic constituents
 - consistent with a gas of the partonic constituents of hadrons

 T_{H} signals change of the relevant thermodynamic degrees of freedom

· Quark Gluon Plasma

Opening Brackets:

The QCD Phase Diagram

The QCD Partition Function

• Evaluate partition function for QCD hamiltonian

$$Z = Tr \exp\left[-\frac{1}{T}\left(\widehat{H} - \mu_{i}\widehat{N}_{i}\right)\right]$$

Two approaches:

- perturbation theory: applies if $\alpha_s(T) \ll 1 \implies T \gg T_c$
- lattice at finite T: applies if $a_{spacing}^{lattice} \sim \frac{1}{T}$ sufficiently large $T \sim O(T_c)$
- Gas of free quarks and gluons

$$P_{free QCD} = \frac{\pi^2}{45} N_g T^4 + ' quark \ degrees \ of \ freedom \ '$$

for an interacting quark gluon plasma

$$\frac{P_{QCD}^{glue}}{P_{free QCD}^{glue}} = 1 - \frac{15}{4} \left(\frac{\alpha_s}{\pi}\right) + 30 \left(\frac{\alpha_s}{\pi}\right)^{3/2} + O\left(\alpha_s^2\right)$$

but perturbation theory has bad convergence properties

Results from Finite Temperature Lattice QCD

• Deconfinement phase transition

$$\epsilon_{c}^{lattice} < \epsilon_{Bjorken} = \frac{1}{\tau_{0} \pi R^{2}} \frac{dE_{T}}{dy}$$

Chiral symmetrybroken by the QCD vacuum

 $\langle \overline{\psi}_L \psi_R + \overline{\psi}_R \psi_L \rangle \simeq (250 \, MeV)^3$

- restored at high temperature

$$\langle \overline{\psi}_L \psi_R + \overline{\psi}_R \psi_L \rangle \rightarrow 0$$

The Lattice QCD Phase Diagram

• For finite baryochemical potential

Phase-space integrated Hadroproduction in Central Heavy Ion Collisions

The Grand Canonical Description

Model of Statistical Hadronization

<u>Basic assumption</u>: a heavy ion collision creates a Hagedorn fireball which releases a thermal resonance mass spectrum determined by statistics

$$\ln Z(T, V, \vec{\mu}) = \sum_{i} \frac{Vg_{i}}{2\pi^{2}} \int \pm p^{2} dp \ln \left[1 \pm \lambda_{i} \exp\left(-\epsilon_{i} = \sqrt{p^{2} + m_{i}^{2}}/T\right)\right]$$

• fugacities λ_i in terms of chemical potentials for baryon #, strangeness and electric charge

$$\lambda_i(T, \vec{\mu}) = \exp\left(\frac{B_i \mu_B + S_i \mu_S + Q_i \mu_Q}{T}\right)$$

• Conservation of strangeness eliminates μ_s

$$\langle N_s \rangle - \langle N_{\overline{s}} \rangle = \lambda_s \frac{\partial}{\partial \lambda_s} \ln (Z_s^{HG}) \equiv 0$$

 $\longrightarrow \mu_s = \mu_s (T, \mu_B)$

Model of Statistical Hadronization (cont'd)

• Number density of produced hadrons

$$n_{i}(T,\mu) = \frac{\langle N_{i} \rangle^{therm}}{V} = \frac{T g_{i}}{2 \pi^{2}} \sum_{k=1}^{\infty} \frac{(\pm 1)^{k+1}}{k} \lambda_{i}^{k} m_{i}^{2} K_{2} \left(\frac{k m_{i}}{T}\right)$$
$$\langle N_{i} \rangle (T,\vec{\mu}) = \langle N_{i} \rangle^{th} (T,\vec{\mu}) + \sum_{j} \Gamma_{j \to i} \langle N_{j} \rangle^{th. resonance} (T,\vec{\mu})$$
$$\underbrace{\int_{decay contributions}}_{decay contributions}$$

• Fraction of final state pions, coming from resonance decays

Problem: derive this from partition function

Comparison to Particle Ratios at RHIC

Ratios $\overline{p}/p \quad \overline{\Lambda}/\Lambda \quad \overline{\Xi}/\Xi \quad \overline{\Omega}/\Omega \quad \pi/\pi^* \, K^*/K^* \, K^*/\pi \quad \overline{p}/\pi \quad K^*/h^* \, \phi/h^* \quad \Lambda/h^* \equiv /h^* \quad \Omega/\pi^* \qquad \overline{p}/p \quad K^*/K^* \, K^*/\pi \quad \overline{p}/\pi \quad \Omega/h^*$ @} ≉ * ∰ #® x10 x 50 • <u>Hadron yields and ratios</u> fitted by statistical model in terms of (T, μ) 🛨 STAR 10⁻¹ PHENIX \cap □ PHOBOS BRAHMS √s_{NN}=200 GeV **√**S_{NN}=130 GeV Model re-fit with all data 10⁻² Model prediction for T = 176 MeV, $\mu_{\rm h}$ = 41 MeV T = 177 MeV, $\mu_{\rm b}$ = 29 MeV Braun-Munzinger et al., PLB 518 (2001) 41 D. Magestro (updated July 22, 2002) 200 T [MeV] $\mu_{\alpha}/T = 1$ • Parameters (T, μ) coincide approach phase boundary of 150 lattice QCD at high energy. 100 (This is an empirical observation) 50 feld-Swanse T_a, Forcrand, Philipsen (T_c, μ_c), Fodor, Katz μ_B [GeV] T₄, J.Cleymans 0 o 0.2 0.40.6 0.8 1.2 1 1.4

Deviations from the Grand Canonical Description

Deviations from Grand Canonical Ensemble

• Rate equation for particles with rare conserved charge $a + b \Leftrightarrow c + \overline{c}$

$$\frac{dP_{N_{c}}}{d\tau} = \underbrace{G\langle N_{a}\rangle\langle N_{b}\rangle P_{N_{c}-1}}_{Gain} + \underbrace{L(N_{c}+1)^{2}P_{N_{c}+1}}_{Loss} - \underbrace{G\langle N_{a}\rangle\langle N_{b}\rangle P_{N_{c}}}_{Gain} - \underbrace{LN_{c}^{2}P_{N_{c}}}_{Loss}$$
• Resulting time evolution of the average number $\langle N_{c}\rangle = \sum_{N_{c}=0}^{\infty} N_{c}P_{N_{c}}(\tau)$
• Grand-canonical (gc) limit $\langle N_{c}\rangle \gg 1$, $\Rightarrow \langle N_{c}^{2}\rangle \approx \langle N_{c}\rangle^{2}$
• Grand-canonical (gc) limit $\langle N_{c}\rangle \gg 1$, $\Rightarrow \langle N_{c}^{2}\rangle \approx \langle N_{c}\rangle^{2}$
• Opposite limit $\langle N_{c}\rangle \ll 1$, $\Rightarrow \langle N_{c}^{2}\rangle \approx \langle N_{c}\rangle$
• Opposite limit $\langle N_{c}\rangle \ll 1$, $\Rightarrow \langle N_{c}^{2}\rangle \approx \langle N_{c}\rangle$
 $\langle N_{c}(\tau)\rangle^{c} = \langle N_{c}\rangle_{equil}^{c}(1-e^{-\tau/\tau_{0}})$
 $\tau_{0} = 1/L$
 $\langle N_{c}\rangle_{equil}^{c} = \epsilon \ll \langle N_{c}\rangle_{equil}^{gc}$
Suppression with respect to grand canonical formalism

Equilibrium Average Number of Rare Particles

• Rewrite rate equation

introduce generating functional $g(x, \tau) = \sum_{N_c=0} x^{N_c} P_{N_c}(\tau)$

00

$$= \frac{dg(x,\tau)}{d\tau} = L(1-x)(xg''+g'-\epsilon g) \qquad \langle N_c \rangle_{equil}^{gc} = \sqrt{\epsilon} \equiv \sqrt{G\langle N_a \rangle \langle N_b \rangle / L}$$

• Equilibrium solution:

$$x g_{eq}'' + g_{eq}' - \epsilon g_{eq} = 0$$
 $g_{eq}(x) = \frac{I_0(2\sqrt{\epsilon x})}{I_0(2\sqrt{\epsilon})}$

• Average number of particles:

If conserved charge is rare, the production in pairs $c + \overline{c}$ is suppressed compared to the grand canonical limit

Canonical Strangeness Suppression at Low Energies

The canonical strangeness suppression factor accounts for the observed reduction compared to the grand canonical limit.

Combining Statistics and Dynamics

Combining Hydrodynamics + Stat. Hadronization

• Recall from first lecture the standard freeze-out condition of hydrodynamics: if $T(x) < T_{fo}$ then energy in space-time hypersurface element $\Sigma(x)$ is converted to hadronic spectrum, <u>assuming statistical hadronization</u>

$$E \frac{dN_i}{d^3 p} = \frac{g_i}{(2\pi)^3} \int_{\Sigma} p \cdot d^3 \sigma(x) f_i(p \cdot u(x), x)$$

$$f_i(E, x) = \frac{1}{\exp[(E - \mu_i(x))/T(x)] \pm 1}$$

$$\sum (x)$$

$$Cooper-Frye freeze-out$$

• Collective flow results in Doppler-shifted hadronic spectra transverse flow

$$u^{\mu}(x) = \left(\cosh\left(\eta\right)\cosh\left(\rho\right), \vec{n}\sinh\left(\rho\left(x_{T}\right)\right), \sinh\left(\eta\right)\sinh\left(\rho\right)\right)$$

$$p^{\mu} = (M_T \cosh(y), \vec{p}_T, M_T \sinh(y)), \quad M_T = \sqrt{m^2 + \vec{p}_T^2}$$

$$\frac{p \cdot u(x)}{T} = \frac{M_T \cosh(\rho)}{T} \cosh(y - \eta) + \frac{\vec{p}_T \sinh(\rho)}{T}$$

emission from longitudinallyslope of pt-spectra determined bycomoving fluid elementcombination of radial flowand temperature

$$_{eff} \approx T \sqrt{\frac{1 + \langle v_T \rangle}{1 - \langle v_T \rangle}}$$

T

... compares well to low-pt Hadron Spectra at RHIC Lisa, Retiere, nucl-th/03122024

10

π.-

π+

- Model fit assuming
 - local thermal equilibrium $T(\eta, b)$
 - collective flow u_{y}
 - $T_{fo} \sim 100 MeV$ $v_{trans} > 0.5 c$
- Mass-dependence of elliptic flow

Model provides minimal parametrization of low-pt spectra but does not address the <u>microscopic dynamics</u> determining these distributions

Limitations to Hydro + Statistical Hadronization

• at sufficiently high-pt, the spectrum is not thermal

• to study how these "out-of-equilibrium" processes evolve towards equilibrium tests the <u>dynamics</u> of thermalization processes

 \frown Lecture 3 + 4

Summary of Lecture 2: Hadron Thermodynamics

- Hadron resonance gas has a <u>limiting temperature</u> due to combinatorics of resonance formation
 - exponential increase in number of states
 - at T_H , Hagedorn's Statistical Bootstrap Model predicts phase transition
 - statistical QCD predicts properties of this phase transition to a plasma of deconfined partons
- <u>Model of statistical hadronization</u> assumes that hadroproduction determined by phase space
 - grand canonical description accounts for particle ratios
 - rare conserved quantum numbers lead to canonical suppression
- <u>Hydrodynamics + statistical hadronization</u>
 - minimal parametrization of low-pt hadronic spectra and elliptic flow
 - unclear whether this is indicative of thermalization processes

