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Summary of Lecture 2: Hadron Thermodynamics

� Hadron resonance gas has a limiting temperature
   due to combinatorics of resonance formation 
  - exponential increase in number of states
  - at        , Hagedorn's Statistical Bootstrap Model 
     predicts phase transition
  - statistical QCD predicts properties of this phase
     transition to a plasma of deconfined partons

T H

� Model of statistical hadronization assumes that
   hadroproduction determined by phase space 
  - grand canonical description accounts for 
     particle ratios
  - rare conserved quantum numbers lead to 
     canonical suppression

� Hydrodynamics + statistical hadronization 
   - minimal parametrization of low-pt 
      hadronic spectra and elliptic flow
  - unclear whether this is indicative of 
     thermalization processes



Lecture 3: 
a. The Space-time picture of the Bulk
b. Hard Processes Escaping the Bulk

a. Identical Two Particle Correlation Functions
    - Interferometry for Central Collisions
    - The space-time picture of elliptic flow 

b. Hard Probes in Heavy Ion Collisions
    - Modifications of high-pt processes in nuclear matter 
                 – to be continued in lecture 4



The Emission Function S(x,K)

� S(x,K) is a quantum-mechanical
  Wigner phase space distribution 

� How can we measure the
  space-time geometry of the 
  particle emitting source  ?

model 1 model 2



Why are two-particle correlations interesting ?

� One-particle spectrum sensitive to momentum information only
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� Q-momentum dependence of two-particle spectrum sensitive to
space-time information
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How to test phase space distribution S(x,K) of particle emitting source ?

Problem 1: derive this
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$ Different HBT radii measure different combinations of spatial and temporal information,
  encoded in the space-time variances which are
  the Gaussian widths of S(x,K)
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$ Distances are always measured w.r.t. the source center, $ Momentum dependence of HBT radii can be exploited to extract spatio-temporal
  information, (over)simplified example: 

Problem 2: derive this



HBT radii measure homogeneity regions

&  They do NOT  measure the entire source size

&  Kt-dependence of HBT radii contains dynamical information

(Kt defines orientation and wave-length filter of the observer's eye)
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The HBT puzzle at RHIC

( Why do radii show such a weak
  dependence on cms energy ?

( Why do hydrodynamical models fail
  to reproduce size and slope of HBT radii ?

Unsolved problem 
(may require an improved
  freeze-out description)



The HBT space-time picture of the reaction plane
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Momentum space

      coordinate space anisotropy
      implies pressure gradient
      implies momentum space anisotropy

HBT particle correlations Elliptic Flow

measures geometry + dynamics depends on geometry but
does not measure it
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determined at freeze-out,
not described by hydro

not sensitive to freeze-out,
hallmark of hydrodynamic behavior



The out-side-long System for Anisotropic Sources
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Problem 3: derive this

     - dependence on HBT radii contains
geometrical and dynamical information
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Azimuthal Dependence at Mid-RapidityD Symmetries: only 5 non-vanishing components

reflection at origin w.r.t. reaction plane
x , y , z EF x ,F y ,F z

S 01

G S 02

G S 03

G 0
x H y IJ K x H y K I

S 12

G S 23

G S 02

G 0

four main axis of emission ellipsoid
and the tilt angle R s

2L 0.5 S 11

M
S 22

M
0.5 S 22

N S 11 cos2

O

R o
2L 0.5 S 11

M
S 22

N 0.5 S 22

N S 11 cos2

O M P

t
2 S 00

R os
2L 0.5 S 22

N S 11 sin 2

O

R l
2L S 33

M P
l
2 S 00

R 0l
2L S 13 cos

O

R sl
2L N S 13 sin

O First harmonics
at midrapidity !

QR 1
2

tan

S 1 2 S 13

S 33

T S 11

D Case: no (implicit)    - dependent position-momentum correlations:

U



Anisotropic HBT at the AGS
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Azimuthal dependence of HBT “sees” reaction plane

STAR preliminary
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Hard Processes Escaping the Bulk



High-Q^2 QCD in a Dense Medium

d Hard partonic 2->2 process is
  well-localized on a scale

              unaffected by the medium 
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d Parton distribution functions (pdfs) 
  of incoming nuclei show modifications 
  compared to pdfs for nucleons.

  Typically a 20% effect. 
  Can be determined in e-A DIS. 
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d Initial state scattering effects,
  Cronin-type pt-broadening and
  possible inelastic processes.
  Can be determined in p-A.

d Final state pt-broadening, collisional
  and radiative energy loss.
  Sensitive to properties of the matter
  produced in A+A collisions.



(Dis)Advantage of 'Self-Gauging' Hard Processes

k Hard partonic 2->2 process is
  well-localized on a scale

              unaffected by the medium 
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k Final state pt-broadening, collisional
  and radiative energy loss.
  Sensitive to properties of the matter
  produced in A+A collisions.

Z-boson
Photon

k Advantage: measuring the recoiling 
  Z-boson or photon fixes jet energy.
  Insensitive to initial state effects

k Disadvantage: theses processes
  are rare and difficult to measure.



Bremsstrahlung (potential scattering) in QED/QCD
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Configuration Space Picture of Bremsstrahlung

~ Consider incoming projectile (electron or quark) with its higher Fock states

projectile � q �

q g

��� Gluon in incoming wavefunction is 'freed' (decoheres) if it interacts with the
  scattering center with significantly different amplitude. 
  This depends on transverse distance of different Fock components.
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Gluon Production in p+A Collisions� Incoming quark carries Weizsacker-Williams gluon cloud quark � q �

q g

��� Gluon in quark interacts with many scattering centers.
  In the high-energy limit, these scattering centers act 
  coherently as one single effective scattering center.
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� Multiple scattering leads to
  redistribution of the gluons
  in transverse phase space

Kovchegov+Mueller, 1998
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Gluon Radiation off a Produced Quark

� No scattering center � dI N � 0
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The medium-modified Final State Parton Shower

Medium characterized by
transport coefficient:

q ¨ © 2ª « n density

¬ How much energy is lost ?

Phase accumulated in medium:
k t

2

2  ®

z ¯ q L 2

2  ° 
c Characteristic 

gluon energy

Number of coherent scatterings:N coh

± t coh² , k t
2 ³ q t coh t coh

´ µ

2k t
2

´ µ

q

Gluon energy distribution: ¶ dI med

d ¶ dz

· 1
N coh

¶ dI 1

d ¶ dz

·¸

s
q ¶

Average energy loss

¹
E ± º »

c

d ¼ ¼ dI med

d ¼ ½ ¾

s

¼

c

³ ¾

s
1
2

q L 2

Baier, Dokshitzer, Mueller, Peigne, Schiff (1996); Zakharov (1997); Wiedemann (2000); Gyulassy, Levai, Vitev (2000); Wang ...



Some Numbers:

q ¿ 1GeV 2

fm

À Transport coefficient: ,       in-medium pathlength:L Á 5 fm

Average momentum broadening:

Characteristic gluon energy:
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The Nuclear Modification FactorÖ Reduced parton energy implies
  reduced leading hadron pt
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Glauber model

Ö The nuclear modification factor



Back-to-Back Correlations: p+p vs. d+Au vs Au-Au

Adams et al. PRL 91 (2003)
Adler et al. PRL 90:082302 (2003)
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Centrality Dependence: Au+Au vs. d+Au

Preliminary DataFinal Data

Þ Final state suppression

Þ Initial state enhancement



Summary of Lecture 3

Þ Identical two-particle Correlations
   measure the space-time extension 
  of collision region at freeze-out

Þ High-Q^2 processes in dense matter
   Parton propagation in matter results in 
   - pt-broadening in initial and final state
   - energy loss of leading parent parton

Þ Observable Consequences of “jet quenching”
   - suppressed leading hadron spectra 
   - exp. test that this suppression is a final state effect
   - dependence on in-medium pathlength/centralityÞ More consequences of “jet quenching”
 

Lecture 4




