Particle ID in high P; reactions(1)

o Parton reactions,QCD effects

o Parton fragmentation -jets

o Showering/absorption in calorimeters
o ATLAS and CMS design principles

o Muon identification

o Some photos of hardware...




Parton reactions, QCD effects

Exemple of interesting reaction:
Final state looks simple : s < g
2 b-quark-partons t s

2 electrons @ <g_

Each quark-parton will materialize as a jef.

However QCD coupling o is large enough that, with sizeable
probability:

-further gluon lines are attached to initial gluons
(or quarks) = ISR

-gluon lines are attached to final quarks (FSR)

Depending on the random occurrence of ISR/FSR,and on the P;threshold to
define a jet, the "bare” graph above will lead to a final state with 2,3 ,4...
Jets (plus the electrons..)



Parton reactions and background

*The "candidate” reaction gg—H—ZZ—bbee is expected to have a
c.BR of ~10 fb if M(H)~150 GeV

-Events with 4 jets or more, of pr 50GeV ore more are produced
with a cross-section of ~30nb from which the candidate reaction
should be distinguished. A rejection >106 is needed

But
-Among the background are t1 events, Zbb events,..containing also jets

and electrons with a ¢ BR of ~ 1pb for the former....

-And another problem is pile-up
In average 7 x 23 x5 ~ 800 charged, and as many neutrals soft

particles are produced in any bunch-crossing, complicating significantly
the electron-jet identification at high luminosity

THREE STEPS for particle ID:

Understand the lepton signatures

Understand the jet background= fragmentation
Understand the experimental effects (resolution, pile-up,..)




Parton fragmentation -jets(1)

Two main quantities of interest: W —

-transverse momentum of fragment/jet axis.  ,F cf hep-ph/01?19282

-fraction x of longitudinal parton momentum ' K Y
taken by fragment.

Best info from e+e- ,in particular LEP/Z°
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reproduced by DGLAP equations.

This effect governs multiplicity increase
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Parton fragmentation (2)

Flavor tagging allows to separate charm jets, bottom jets,and also
Gluons jets as "third jet" in bbg 3 jet events.

Gluon fragmentation also from sin?(6)F, (x) term in do/dxdcos(6):
1/6 d? 6/dxdcos(0)=3/8(1+cos?(8))F++3/4 sin?(0)F (x)+3/4 cos(B)F,
—b jets and gluon jets give softer particles than light quarks
—however fragmentation of b parton in b hadron is very hard
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Parton fragmentation (3)

aga, £ pole LEP data —

Monte-Carlo modelisation : string model 300} 89,
i L
A string representing the QCD colour field 2 :
is "stretched' between partons: 1oL mmumntﬂt’hbf% ‘_
o RN
If energy stored is sufficient: 3 v Eﬁ% Z
. . . [
A qq pair is emitted from vacuum m b o v ,&.% 3
i : +.l.‘ o o
z 03 Y 0 TR
P(pair creation)o. exp-(-tm?/x) where Z 01} ﬁﬁﬂa%&ﬂwﬁ < , Ly
k=string tension ~ 16eV/fm ~ g s T ﬁc;
m?2 qT = m2 +p "I O Allcharged (x 1.1) &ﬁd?l :
0.01F & .
f(2)=1/2(1-2) * exp-(bm,r /2) = b
heavy hadrons-even kaons- 00031 5 xyx0 4
. | ‘I.'JJI,-__‘EI |
heavily suppressed ﬂ-ﬂﬂli T \
0.00031 & p/p (x0.04)
A AN (x0.04)
: 0.0001 | _
When x—1 the jet has only one hard T O S o ﬁ

particle,....plus pile-up .



Parton fragmentation (4)

*The transverse momentum structure of a jet is
analyzed measuring the fraction p of energy contained
in a cone of radius r as compared to a radius R taken as
reference.

-Data from HERA and Tevatron are well reproduced by
NLO calculations.

-Jets defined in this way (cone) vary only slowly in shape
with E;
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Showering in calorimeters

Particles from the jets go through the "light" tracking systems with a
minimum of interactions.Then showering in calorimeters starts

Two rather well separated processes take place:

Electromagnetic showers: photons( prompt or from =9, .. )electrons

Hadronic showers: charged pions, kaons, nucleons,, from jets

While the hadronic shower develops, secondary n° n* n- are produced with
equal probability (isospin invariance), and thus a hadronic-initiated shower
develops an EM component.

The reverse is not true: an EM initiated shower remains EM (to ~10-3)

Muons ,like electrons have “only” EM interactions, but at a much reduced

rate due to the (e2/m)2 factor in radiative cross-sections: Except at the

highest energies they "happily” cross through several meters of iron.
—This gives a robust way of identifying them.
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A Compact Solenoidal Detector for LHC
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ATLAS

Muon Detectors Electromagnetic Calorimeters

. Forward Calorimeters
Solenoid

End Cap Toroid

B | Toroid Inner Detector ' _ -
arrel forol Hadronic Calorimeters Shielding



Pipelined-multilevel-triggers
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EM showers(1)

High energy photons and electrons interactions with matter are governed
by the radiation length :X,(g/cm?) =716 A/Z(Z+1)log(287/Z) (lead X, = 6 mm)

* Electron bremsstrahlung <Eel> after | : E=E, exp(-1/ X,)
* Pair creation: mean free path of photon=9/7 X,

At any energy electrons are subject, like any other charged particle to energy
loss by ionisation (and Cerenkov if v/c>1/n)
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(1/E)dE /dt

EM showers(2)

*The longitudinal profile of showers expressed in X, is almost material
independent, and depends only logarithmically of E

~30 X, (18 cm lead equivalent)is enough to absorb a TeV EM shower
*The transverse profile is driven by multiple scattering (Es=21 MeV) of
electrons. It is almost energy independent, and characterized by

Ry =XoEs/Ec the Moliere radius , proportional to the material density
At high enough energy EM shower fluctuations in shapedsize are limited
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High energy muons in material

1000 g

At high E radiative dE/dx

(prop to E) becomes larger i |
than ionisation dE/dx. § o F
Iniron the cross-over =
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Hadronic showers(1)

Theory of hadron-nucleus collisions not able to reproduce data with
multiparticle final states in a reliable way.Rely on models interpolating
tabulated cross-sections,

Analog of X, is the interaction length A, mean free path before the
next inelastic collision of a hadron. A goes with Al/3,

In general A > X,. For iron(lead) A =17cm(18cm), X, = 17,6 mm(6mm)
Hadronic interactions are more “inelastic” than EM ones,and ~12 A
are enough to absorb a TeV pion

The choice of material is dictated by density, cost, ease of machining,
(non) magnetic properties (copper/iron),..

In general a hadronic calorimeter is “non-compensating” (e/m >1).
This is an important limitation which -to some extend- can be
alleviated using (depleted) uranium as an absorber.

Transverse behavior in showers is dominated by p; of hadronic
process

Monte-Carlo simulations not yet at the level of EM ones.
Geant4/LHEP,Geant4/QGSP, FLUKA,...
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INTEGRAL PUNCHTHROUGH PROBABILITY

Hadronic showers(2) -tails
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Muon

Example of what is
expected to be found
behind the ATLAS
calorimeter (>12A)

+  Real muons
("prompt” and
secondaries)

* "punch-through”

*  Uncorrelated hits
(from neutron and
photon gas)

identification(1)
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Muon id(2) : neutron induced hits

Slow neutrons linger around for ms before being captured,
Radiative captures in turn produce photons
Both interact(n:10-4, v :10-2 )with the muon chamber gas —random hits
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ATLAS Muon id(3) :find tracks

And cut on transverse momentum...

1+ Total

Charged
- Meutral
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3 stations of precision chambers (drift tubes) interleaved with Trigger chambers

LVL1 Trigger Chambers= fast response (25 ns)
— lower rate area (barrel)=RPC- higher rate=TGC
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ATLAS LVL1 Muon

Hit in RPC1
Extrapolates straight from VX to RPC2 ® window for coincidence=low p+
Extrapolates o RPC3 @ window for coincidence=high p;

Comblined
Process Barral End-cap gystam
Low-p- (8 GeV) n/ K dacays L 0.8 |68
10 33 b 1.9 2.1 41
& 1.1 [.3 24
W 0.004 0.005 0.m0g
Toital 10.0 13.2 232 kHz
Hlgh-p (20 GeV) x/ K decays 0.3 |.8 2.1
b 0.4 0.7 1.1
1034 & 0.2 0.3 0.5
W 0.035 0041 0076
Total 0.9 2.8 18 kHz
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Further Muon ID(5)

Further ID steps:
Reconstruct track in spectrometer -momentum (LVL2,LVL3,o0ffline)
Extrapolate to tracker; do combined fit (LVL2 LVL3,0ffline)
allows some rejection of ©/K decays (low L, low Eth)
Check signals in calorimeter (last layers of HCAL are quiet)
Look for non-zero impact parameter —prompt/secondary
Identify the sign (lepton or antilepton...—»W' flavour/asymeftry,..)
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Contributions to muon resolution

Contribution to resolution (%)
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CMS Muon ID(1)

1))

Chambers “"embedded" in iron flux return after ~8A

Punch

-through more important in first layers

Include precision chambers (Drift Tubes) at LVL1 for better low momentum

rejection
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Anode wire Electrode w_:?

hlrx Pl F Sy i L H\.N\H\.\H
T_. 42 mim -

Figure 2: Schematic view of a drift cell with elecmic field lines.
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Figure 1. Layout of the CMS mmon system.
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Global Muon Trigger Overview
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Inputs:

8 bit ¢, 6 bit n, 5 bit py,
2 bits charge, 3 bit quality,
1 bit halo/h fine-coarse

to GT

= Best4pu

cancel OT

I

canioel CEC

cancel iwdRPC

4 u CSC
4 u RPC fwd

Output:

8 bit ¢, 6 bit n, 5 bit py,

2 bits charge/synch, 3 bit
quality, mIP bit, Isolation bit
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CMS Muon ID(3)

Combined mu-ID at LVL3
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Muon trigger and ID summary

‘Instrumental BG : showers debris, random (n-induced) hits
‘LVL1 rate dominated by real muons

-Fast pattern recognition needed

*Final rate strongly linked to threshold

‘Final Strategy depends on Luminosity/Physics

low L (B physics threshold down to ~6 GeV/c desirable)
high L threshold down to 20 GeV/c p; needed
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ATLAS Barrel Toroid

8 separate coi ls\
iy I : ; ? -

BT Parameters
25.3 m length

20.1 m outer diameter
8 coils

1.08 GJ stored energy 2 .
370 tons cold mass R R M B
56 km Al/NbTi/Cu conductor " HR
20.5 kA nominal current
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Atlas muon alignment system

Station 3

*Goal:control positions to <30microns/10m | diffusor coded projection

LE

4 mask fiker RasCam P containing
‘Uses light (IR) rays,masks and sensors sled | g { LA bkl
»projective to monitor plans # | I I—| EE —
» axial Yo monitor within plans o Y o T‘—'ﬁ'ﬁ'ﬁ—'im
-About 10 000 sensors overall f‘ % g — =

Tested successfully (15 pm rms when displacing one chamber) in CERN H8 beam line

comparing alignment with tracks and sensors
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CMS solenoid

‘Main parameters: 4 Teslas, 7m diameter, 15 m length, 2.5 GJ stored
-Coil is made of 5 modules (CB-2 —CB+2),each with 4 layers
*Cold test of complete coil on surface : mid 05

N\ Ansaldo 3
Superconduttori.‘\___ :
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CMS : DT module insertion




