Particle ID in high P_{T} reactions(1)

- o Parton reactions,QCD effects
- o Parton fragmentation -jets
- o Showering/absorption in calorimeters
- o ATLAS and CMS design principles
- o Muon identification
- o Some photos of hardware...

Parton reactions, QCD effects

Exemple of interesting reaction: Final state looks simple : 2 b-quark-partons 2 electrons Each quark-parton will materialize as a jet.

However QCD coupling α_s is large enough that, with sizeable probability:
-further gluon lines are attached to initial gluons
(or quarks) = ISR
-gluon lines are attached to final quarks (FSR)

Depending on the random occurrence of ISR/FSR, and on the P_T threshold to define a jet, the "bare" graph above will lead to a final state with 2,3,4... Jets (plus the electrons..)

Parton reactions and background

•The "candidate" reaction gg \rightarrow H \rightarrow ZZ \rightarrow bbee is expected to have a σ .BR of ~10 fb if M(H)~150 GeV

•Events with 4 jets or more, of p_T 50GeV ore more are produced with a cross-section of ~30nb from which the candidate reaction should be distinguished. A rejection >>10⁶ is needed

The task is not simple!.....

Fortunately an electron appears extremely different from a jet..... But

- •Among the background are tt events, Zbb events,...containing also jets and electrons with a σ BR of ~ 1pb for the former....
- And another problem is pile-up

In average $7 \times 23 \times 5 \sim 800$ charged, and as many neutrals soft particles are produced in any bunch-crossing, complicating significantly the electron-jet identification at high luminosity

THREE STEPS for particle ID: Understand the lepton signatures Understand the jet background= fragmentation Understand the experimental effects (resolution, pile-up,..)

Parton fragmentation -jets(1)

Two main quantities of interest: -transverse momentum of fragment/jet axis. -fraction x of longitudinal parton momentum taken by fragment.

Best info from e+e- , in particular LEP/Z⁰

$$F^{h}(x,s) = \frac{1}{\sigma_{\text{tot}}} \frac{d\sigma}{dx} (e^{+}e^{-} \to V \to hX)$$
$$F^{h}(x,s) = \sum_{i} \int_{x}^{1} \frac{dz}{z} C_{i}(s;z,\alpha_{s}) D_{i}^{h}(x/z,s)$$

 $D_{i}^{h}(x/z,s) = parton fragmentation function$ In lowest order $C_{g}=0$, $C_{i}=g_{i}(s) \delta(1-z)$

Evolution of D(x,t) - increase at low x- is reproduced by DGLAP equations.

This effect governs multiplicity increase (at the ZO pole <Nch>=20)

Parton fragmentation (2)

Flavor tagging allows to separate charm jets, bottom jets, and also Gluons jets as "third jet" in bbg 3 jet events. Gluon fragmentation also from $\sin^2(\theta)F_L(x)$ term in $d\sigma/dxdcos(\theta)$: $1/\sigma d^2 \sigma/dxdcos(\theta)=3/8(1+cos^2(\theta))F_T+3/4 sin^2(\theta)F_L(x)+3/4 cos(\theta)F_A$ $\rightarrow b$ jets and gluon jets give softer particles than light quarks \rightarrow however fragmentation of b parton in b hadron is very hard

Parton fragmentation (3)

Monte-Carlo modelisation : string model

A string representing the QCD colour field is "stretched' between partons:

If energy stored is sufficient: A qq pair is emitted from vacuum

P(pair creation) $\alpha \exp(-\pi m_{qT}^2/\kappa)$ where κ =string tension ~ 1GeV/fm $m_{qT}^2 = m_q^2 + p_q^2$ $f(z)=1/z(1-z)^{\alpha} \exp(-(bm_{qT}^2/z))$ heavy hadrons-even kaonsheavily suppressed

When $x \rightarrow 1$ the jet has only one hard particle,....plus pile-up

Parton fragmentation (4)

•The transverse momentum structure of a jet is analyzed measuring the fraction ρ of energy contained in a cone of radius r as compared to a radius R taken as reference.

•Data from HERA and Tevatron are well reproduced by NLO calculations.

·Jets defined in this way (cone) vary only slowly in shape with E_{T}

DO data NLO calculations Separation between jets as parameter

Showering in calorimeters

Particles from the jets go through the "light" tracking systems with a minimum of interactions. Then showering in calorimeters starts

Two rather well separated processes take place:

<u>Electromagnetic showers</u>: photons(prompt or from π^0 ,...) electrons

<u>Hadronic showers</u>: charged pions, kaons, nucleons,,,from jets

While the hadronic shower develops, secondary $\pi^0 \pi^+ \pi^-$ are produced with equal probability (isospin invariance), and thus a hadronic-initiated shower develops an EM component.

The reverse is not true: an EM initiated shower remains EM (to ~10⁻³)

<u>Muons</u>, like electrons have "only" EM interactions, but at a much reduced rate due to the $(e^2/m)^2$ factor in radiative cross-sections: Except at the highest energies they "happily" cross through several meters of iron. \rightarrow This gives a robust way of identifying them.

D712/mb-26/06/97

ATLAS

Pipelined-multilevel-triggers

EM showers(1)

High energy photons and electrons interactions with matter are governed by the radiation length : $X_0(g/cm^2)$ =716 A/Z(Z+1)log(287/ \sqrt{Z}) (lead X₀ = 6 mm)

- Electron bremsstrahlung < Eel> after I : E=E₀ exp(-I/X₀)
- Pair creation: mean free path of photon= $9/7 X_0$

At any energy electrons are subject, like any other charged particle to energy loss by ionisation (and Cerenkov if v/c>1/n)

- •The energy where the two losses are equal is the critical energy Ec.
- •The process of bremsstrahlung remains dominant until E~Ec
- •Small values of Ec and X₀ give better sampling calorimeters. For lead Ec=7MeV

EM showers(2)

The longitudinal profile of showers expressed in X₀ is almost material independent, and depends only logarithmically of E
~30 X₀ (18 cm lead equivalent) is enough to absorb a TeV EM shower
The transverse profile is driven by multiple scattering (Es=21 MeV) of electrons. It is almost energy independent, and characterized by R_M =X₀Es/Ec the Moliere radius , proportional to the material density
At high enough energy EM shower fluctuations in shape&size are limited

High energy muons in material

14

Hadronic showers(1)

- Theory of hadron-nucleus collisions not able to reproduce data ,with multiparticle final states in a reliable way.Rely on models interpolating tabulated cross-sections,
- Analog of X_0 is the interaction length λ , mean free path before the next inelastic collision of a hadron. λ goes with $A^{1/3}$.
- In general $\lambda > X_0$. For iron(lead) $\lambda = 17 \text{ cm}(18 \text{ cm}), X_0 = 17,6 \text{ mm}(6 \text{ mm})$
- Hadronic interactions are more "inelastic" than EM ones,and ~12 λ are enough to absorb a TeV pion
- The choice of material is dictated by density, cost, ease of machining, (non) magnetic properties (copper/iron),..
- In general a hadronic calorimeter is "non-compensating" ($e/\pi > 1$). This is an important limitation which -to some extend- can be alleviated using (depleted) uranium as an absorber.
- Transverse behavior in showers is dominated by \textbf{p}_{T} of hadronic process
- Monte-Carlo simulations not yet at the level of EM ones. Geant4/LHEP,Geant4/QGSP, FLUKA,...

Hadronic showers(2) -tails

"punch-through" probability of π⁺ after 10λ as measured by RD-5

Muon identification(1)

- Example of what is expected to be found behind the ATLAS calorimeter (>12)
- Real muons
 ("prompt" and secondaries)
- "punch-through"
- Uncorrelated hits (from neutron and photon gas)

Muon id(2) : neutron induced hits

- Slow neutrons linger around for ms before being captured,
- Radiative captures in turn produce photons
- . Both interact(n:10⁻⁴, γ :10⁻²)with the muon chamber gas \rightarrow random hits

ATLAS Muon id(3) : find tracks

And cut on transverse momentum...

3 stations of precision chambers (drift tubes) interleaved with Trigger chambers

LVL1 Trigger Chambers= fast response (25 ns) \rightarrow lower rate area (barrel)=RPC- higher rate=TGC 19

ATLAS LVL1 Muon

- Hit in RPC1
- Extrapolates straight from VX to RPC2 \oplus window for coincidence=low p_T
- Extrapolates to RPC3 \oplus window for coincidence=high p_T

	Process	Barrel	End-cap	Combined system	
Low-p _T (6 GeV)	π/K decays	7.0	9.8	16.8	28
033	Ь	1.9	2.1	4.0	
	c	1.1	1.3	2.4	
	w	0.004	0.005	0.009	
	Total	10.0	13.2	23.2	kHz
High-p _T (20 GeV)	π/K decays	0.3	1.8	2.1	230
	ь	0.4	0.7	1.1	
10 ³⁴	c	0.2	0.3	0.5	
	w	0.035	0.041	0.076	
	Total	0.9	2.8	3.8	kHz

Further Muon ID(5)

Further ID steps:

- Reconstruct track in spectrometer \rightarrow momentum (LVL2,LVL3,offline)
- Extrapolate to tracker; do combined fit (LVL2,LVL3,offline) allows some rejection of π/K decays (low L, low Eth)
- Check signals in calorimeter (last layers of HCAL are quiet)
- Look for non-zero impact parameter \rightarrow prompt/secondary
- Identify the sign (lepton or antilepton.... \rightarrow W' flavour/asymetry,..)

Contributions to muon resolution

CMS Muon ID(1)

- Chambers "embedded" in iron flux return after ${\sim}8\lambda$
- Punch-through more important in first layers
- Include precision chambers (Drift Tubes) at LVL1 for better low momentum rejection

Figure 1: Layout of the CMS muon system.

CMS Muon ID(3)

1033

Combined mu-ID at LVL3

Efficiency (W decay)

Rate against

Muon trigger and ID summary

•Instrumental BG : showers debris, random (n-induced) hits

•LVL1 rate dominated by real muons

•Fast pattern recognition needed

•Final rate strongly linked to threshold

Final Strategy depends on Luminosity/Physics
 low L (B physics threshold down to ~6 GeV/c desirable)
 high L threshold down to 20 GeV/c p_T needed

ATLAS Barrel Toroid

Atlas toroid magnet

cold test first coil just started
All 8 coils assembled in pit march 05

Atlas muon alignment system

Goal:control positions to <30microns/10m
Uses light (IR) rays,masks and sensors
> projective to monitor plans
> axial to monitor within plans
About 10 000 sensors overall

Tested successfully (15 μ m rms when displacing one chamber) in CERN H8 beam line comparing alignment with tracks and sensors

CMS solenoid

Main parameters: 4 Teslas, 7m diameter, 15 m length, 2.5 GJ stored
Coil is made of 5 modules (CB-2 →CB+2), each with 4 layers
Cold test of complete coil on surface : mid 05

CMS: DT module insertion

