# Particle ID in high P<sub>T</sub> reactions(2)

oEM calorimeters oEM shower ID oTrackers oElectron and Photon ID oTau I D oJets and Missing  $E_{\tau}$ , neutrino oTrigger strategy and rates oW and 7s

#### EM calorimeter requirements

- "flag" EM showers from overwhelming jet "background" already at LVL1 ie every 25 ns a new collision of bunches (fast)
- Provide accurate energy measurement (precise, stable, uniform)
   -H→γγ most demanding **d**M/M=1% or better at ~120 GeV
   -large dynamic range few MeV (noise) to several TeV
- Provide position measurement
   -link with electron track
  - -direction of photon from vertex point
- Provide accurate timing (100 ps=3cm)
- Provide some angular measurement
- Provide jet-electron and jet-photon rejection at high level (granular)
- Keep performance after several years of irradiation (rad resistant)
- Two Different techniques ATLAS=LAr CMS=Crystals

#### CMS PbWO<sub>4</sub> crystal calorimeter



PbW0<sub>4</sub>:

- -radiation hard (but...)
- -fast(80% in 25ns)
- -compact  $X_0=0.9$  cm  $R_M=2.2$  cm
- $-4T \rightarrow APD$
- -low LY: 6 photo-electrons/MeV

barrel: 62k crystals 2.2 x 2.2 x23cm
end-caps: 15k crystals 3 x 3 x 22 cm

#### CMS PbWO<sub>4</sub> crystals





25 k crystals out of 62 k delivered (barrel) 103k out of 130k APDs delivered

#### Front End Electronics

- preamplifier/shaper in CMOS-DSM
- 3 gains, with 1 adc/gain (12 bits)
- noise ~ 40 MeV

#### CMS PbWO<sub>4</sub> APDs



#### Manufactured by Hamamatsu Photonics, Japan

#### Properties :

| • | Active area                             | $5 \ge 5 \text{ mm}^2$ |                           |
|---|-----------------------------------------|------------------------|---------------------------|
| • | Quantum Efficiency                      | 72% at 420 nm          |                           |
| • | Operating gain (M)                      | 50 +                   | _                         |
| • | Charge collection within 20 ns          | $99 \pm 1\%$           |                           |
| • | Capacitance                             | 80 pF                  |                           |
| • | Serial resistance                       | < 10 O                 |                           |
| • | Dark Current (Id) before irradiation    | ~ 3.5 nA               |                           |
| • | Voltage sensitivity (1/M dM/dV)         | 3.15 % / V             |                           |
| • | Temperature sensitivity (1/M dM/dT)     | - 2.4 % / °C ◀         | — -2% for crystal as well |
| • | Excess noise factor                     | 2.1                    |                           |
| • | Breakdown - operating voltage (Vb - Vr) | $45 \pm 5 \text{ V}$   | 5                         |
|   |                                         |                        |                           |



•Light spectrum: broad peak around 450 nm (blue)

•Light transmission drops/recover by few % under irradiation: →monitoring by laser pulses at several wavelengths (time scale=hours)

#### Crystal calibration



Calibration strategy:



Laser monitoring "universal ratio" makes task much easier

#### CMS crystals : selected test beam results



#### CMS crystals: Energy resolution



New DSM electronics



## Atlas Liquid Argon EM calorimeter

Lead-Liquid argon: -radiation hard, stable, uniform -fast (accordion + el-shaping) -"easily" granular-3 samplings in depth front .008 x .1 middle .025 x .025 back .050 x .025 -less compact/crystals X<sub>0</sub>=2 cm, R<sub>M</sub>~4cm (93% in 3x3) -sampling→10%/√E -noise: ~30 MeV/central cell -3 gains + analog sum/LVL1 -180 kchannels in total -cell to cell calibration purely electronic 10

#### Atlas LAr-EM: ionisation and calibration signals



deviation [%]

0

#### Atlas LAr-EM: selected test beam results



12

#### Atlas LAr-EM: selected test beam results



Linearity:10-3

Energy resolution:  $10\%/\sqrt{E \oplus 0.3\%}$  local

Uniformity: 0.57% on One full module 0.4x 1.4

#### Atlas LAr-EM: some pictures....









## EM shower ID at LVL1

Basic approach:

"digitize and sum" (CMS) or "sum and digitize" (ATLAS) signals from a "small" **dh x df** region of EM calorimeter, but "large enough" to fully contain an EM shower and compare to threshold.

Jet background:

-huge, but decrease fast with  $\mathsf{E}_{\mathsf{T}}$ 

-jets are broad  $\rightarrow$ ask for "isolation",...but pile-up may kill good candidates



#### EM shower ID : LVL1 in ATLAS



Figure 4-15 Inclusive electron trigger rate for luminosity 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>, without isolation (solid), requiring only hadronic isolation (dotted) and requiring both electromagnetic and hadronic isolation (dashed).

Figure 4-16 Inclusive electron trigger rate for luminosity 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>, without isolation (solid), requiring only hadronic isolation (dotted) and requiring both electromagnetic and hadronic isolation (dashed).

I solation (mostly hadronic-less pileup-threshold~3 GeV/10<sup>34</sup>) helps

#### EM shower ID : LVL1 in CMS



Granularity a bit better than ATLAS at LVL1

Trigger towers .087 x .087 (5 x 5 crystals-1x1 HCAL)
Hit+max equivalent to 2 x 1 of ATLAS
3 x 3 window for HCAL isolation
Fine grain cut on **h** profile in Hit cell (1 x 5 crystals) (in ATLAS the equivalent is possible only at LVL2)

#### EM shower ID : LVL1 in CMS



Fig. 3.12: The integrated QCD background rate above electron/photon trigger  $E_T$  cutoff is plotted versus the  $E_T$  cutoff for high and low luminosity operation of the LHC. Data for both isolated and non-isolated electrons are shown.

Estimated rate lower than ATLAS (at 30GeV HL: 15 kHZ against 30)

## EM shower $\rightarrow e/g$ need tracker information

Basic approach :

-electron:

a track points to the EM cluster with E/p~1, but brems...

-photon: nothing in front of EM cluster,.. but conversion, Dalitz, pile-up



Beforehand,

since rates are high at LVL1, use at LVL2 the full granularity information from EM calorimeter



#### CMS ID material





#### ATLAS tracker: Si and TRT in 2T



Transition Radiation Tracker: -long(70cm) straws $\rightarrow$ high occupancy -large number of crossed straws(~30)  $\rightarrow$ "easy" pattern

Transition radiation: -charged particle crossing N thin foils(CH<sub>2</sub>)/vacuum transitions emits photons in X range if g>1 I (emitted energy) α g N(photons>E<sub>th</sub>) α log<sup>2</sup>g -X-rays materialize in Xenon rich gas giving large signals (>~6 keV against ~2 keV for dE/dx)

#### Electron I D: LVL2 in ATLAS

Further to LVL1 selection with rate of ~30 kHz for 30 GeV  $E_{\rm T}$  at  $10^{34}$  ~12 kHz for 25 GeV  $E_{\rm T}$  at 2 10^{33}

LVL2 requires: •A shower shape matching an EM cluster

•A track in the ID (using calorimeter cluster as seed) in **dhx df** =0.1 x 0.1

•A track-cluster matching (position: **dhx df**< 0.02 x 0.02 , and E/p)

•A TRT signature



Figure 7-28 Ratio between energy of EM clusters to momentum of reconstructed charged tracks for electrons (dashed) and jets. For the 'jet' sample, various components are shown: electrons from W's and Z s (black), electrons from heavy flavour (dense hatch), conversions (light hatch) and hadrons (open). The normalisation between the single electrons and the jet sample is arbitrary.



# Electron ID with TRT



testbeam

TRT suited for "pure" electron sample, but implies reduced efficiency

#### Electron ID:ATLAS overall

•With the stat generated (10° jets) above 17 GeV  $E_{T}$  the rejection run out of statistics.

 Already before E/p and TRT cuts the background is dominated by real electrons (b/c and conversions)

•TRT is most useful at lower energy where bkg is worse

| Cuts         | High luminosity         |        |                           |       |  |  |
|--------------|-------------------------|--------|---------------------------|-------|--|--|
|              | Eff e <sub>30</sub> (%) |        | Rej jets (10 <sup>3</sup> |       |  |  |
| LVL1         | 96.1                    |        | 0.09                      |       |  |  |
| LVL2 Calo    | 92.1                    | (95.6) | 0.48                      | (5.2) |  |  |
| LVL2 ID      | 82.5                    | (89.5) | 3.7                       | (7.8) |  |  |
| Offline Calo | 81.1                    | (98.3) | 8.4                       | (2.2) |  |  |
| Offline ID   | 77.2                    | (93.6) | 22.7                      | (2.7) |  |  |
| Matching     | 75.3                    | (97.4) | 35.8                      | (1.6) |  |  |
| TR           | 67.5                    | (89.7) | >45                       |       |  |  |

| Trigger Step  |                       | Rate (Hz)     | Efficiency (%) |  |
|---------------|-----------------------|---------------|----------------|--|
| LVL2 Calo     | 0.1033                | $2114 \pm 48$ | 95.9 ± 0.3     |  |
| LVL2 Tracking | $2 10^{33}$           | $529 \pm 24$  | 88.0 ± 0.5     |  |
| LVL2 Matching | 25 GeV E <sub>T</sub> | 137 ± 12      | $86.6 \pm 0.6$ |  |
| EF Global     |                       | 30 ± 5        | $79.0 \pm 0.7$ |  |

#### Electron I D : LVL2 in CMS

Starting from LVL1 isolated clusters(5 x5) the following steps are made:

•Reconstruct a "super-cluster" and apply  $E_T$  threshold (95% eff as LVL1) (thresholds estimated to be ,at 10<sup>34</sup>, 31 GeV for SC against 30 for LVL1)





•Find corresponding hits in the pixels

-takes advantage that CoG in calo is independent of brems) -extrapolate in  $r\phi$  to innermost pixel layer

-if successful extrapolates to  $2^{nd}$  and 3d pixel layer (r $\phi$  and z) -repeat for other sign hypothesis

#### Electron I D:LVL2 and 3 in CMS

•Tracking :use calo Super Cluster and corresponding pixel hits as seed.

•LVL3=Apply loose track cuts, position and E/p match

Rate estimated at 10<sup>34</sup> and Eth=30 GeV

| signal      | background                                        |
|-------------|---------------------------------------------------|
| W→ev =35 Hz | Charged/neut <b>p</b><br>overlap =15Hz            |
|             | <b>p</b> <sup>0</sup> Dalitz and conversions=19Hz |
|             | b/c→e+X = 6Hz                                     |
| Total=35Hz  | Total=40 Hz                                       |



#### What about Photons?

•Similar "shower shape" criteria as electrons

No track match

•No E/p

•"absence of a track" is a weak criterium, especially with pile-up...  $\rightarrow$ harder to identify than electrons... In fact: two classes



# Photon I D in ATLAS

Jet background composition (true photons removed-quark brem,..) after "general" calorimeter cuts:

| « I solated » $\pi^0$                                                                    | 72% |
|------------------------------------------------------------------------------------------|-----|
| $\eta{ ightarrow}\gamma\gamma$ , $\omega{ ightarrow}\gamma\pi^0$ ,KS $ ightarrow 2\pi^0$ | 13% |
| « multi » π <sup>0</sup>                                                                 | 4%  |
| electron                                                                                 | 4%  |
| single charged hadron                                                                    | 4%  |
| single neutral hadron                                                                    | 1%  |
| Others                                                                                   | 2%  |



•Further rejection of  $\pi^0$  can be obtained exploiting the fine granularity of the first sampling (**dh**=.003 or 5mm).The two photons of a 60 GeV E<sub>T</sub> symmetric  $\pi^0$  decay are separated by >7mm at the calorimeter face!

## Photon I D in ATLAS (2)



Overall jet rejection obtained in MC:

-1050 for quark jets

-6000 for gluon jets  $\rightarrow$  Ultimate performance process dependant! (probability of a high x isolated  $\mathbf{p}^0$  is higher in a quark jet than in a gluon jet)

# • Non leptonic modes as "1 or 3 prongs super narrow jets" when $E_{\tau}$ increases

#### Tau identification (1)

•Another lepton for EW signatures •Much more potential for Higgs Physics: coupling prop to mass  $m_{t} / m_{m} / me = 1777/106/0.5 \text{ MeV}$ •Lifetime 0.3 ps ie 89 microns x g •Main decay modes

| mode | evv     | μνν     | <i>π</i> -ν | π∿<br>+neut | $\pi^{+}\pi^{+}\pi^{-}$ v | $\pi^{-}\pi^{+}\pi^{-}\nu$<br>+neut | rest |
|------|---------|---------|-------------|-------------|---------------------------|-------------------------------------|------|
| BR   | 17<br>% | 17<br>% | 11<br>%     | 38%         | 9%                        | 5%                                  | 3%   |

the loss of  $E_{T}$  to **n** 





## Tau identification (2)



The requirement of 100GeV  $E_T$  on the <u>tau Jet</u> means reduced efficiency slowly starts at 100

#### Jets and missing $E_{T}$

- Jets are comparatively easier to trigger on and reconstruct.
- Cross-section decreases very fast with E<sub>T</sub> accurate E<sub>T</sub> measurement at trigger level is important

   → large cluster size like 0.8 x 0.8 or more
   → correct weighting of EM and HCAL energies (ATLAS and CMS calorimeters are non-compensating...)
- Ability to separate nearby jets  $\rightarrow$  smaller cluster size preferred

ATLAS works with 4x4 trigger cells of 0.2x0.2
A LVL1 internal logic eliminates dble counting and finds core of triggering jet, which defines RoI for HLT ....all that every 25ns for the whole solid angle...



Figure 4-31 Jet trigger efficiency curves for 100 GeV  $E_{\rm T}$  jets, for different cluster sizes, at luminosity  $10^{33}$  cm<sup>-2</sup>s<sup>-1</sup>.

Figure 4-32 Trigger rate vs. efficiency for 100 GeV  $E_T$  jets, for different cluster sizes, at luminosity  $10^{33}$  cm<sup>-2</sup>s<sup>-1</sup>.

# Missing $E_{T}$

•From the position and energy of each of the trigger cells, are calculated, every 25 ns, summing on EM and HCAL sections.

 $-SE_x$  and  $SE_y$  a 2-vector in the transverse plane whose modulus is  $E_T$  miss  $-SE_T$  in the transverse plane, also called "total  $E_T$ "

•If there are no missing particles  $SE_x=0$  and  $SE_y=0$ , ie  $E_Tmiss=0$ •Accuracy limited by :

-fluctuations of sampled energies, and noise (option=threshold) -uncovered solid angle (h>5),(high E, but \*sin(q) $\rightarrow$ 0=OK)

-cracks,...

 Conversely E<sub>T</sub> miss <sup>1</sup> 0 signs a missing particle: a neutrino(s) or something more exotic....



# From missing E<sub>T</sub> to missing particle(s)

Need hypotheses....to be confirmed by event analysis:

•<u>Single particle missing</u> (**n**,neutralino,..) E<sub>T</sub>miss = transverse momentum

•<u>Two particles missing</u> =ambiguous in the transverse plane.

can be solved if missing particles are decay products of two "massless" parents, like taus, of which other decay particules are identified (as a narrow jet)



## Missing $E_T$ in the trigger....

LVL1  $E_{T miss}$  trigger for QCD jets and single W evts:  $\rightarrow$ too high rate in stand alone to catch for example W $\rightarrow$ tm @ use it combined with other signatures:  $-E_{T} miss + taus$  $-E_{T} miss + jets (SUSY),....$ 







Figure 15-47 Event rates as function of E<sub>T</sub><sup>miss</sup> when requiring a jet above various thresholds. Left: low luminosity; right: high luminosity.

#### Expected LVL1 rates at "low" L

Table 15-1 Level-1 Trigger table at low luminosity. Thresholds correspond to values with 95% efficiency.

| Trigger                            | CMS 10 <sup>33</sup> | Threshold<br>(GeV or GeV/c) | Rate<br>(kHz) | Cumulative<br>(kHz) | RateATLAS       |
|------------------------------------|----------------------|-----------------------------|---------------|---------------------|-----------------|
| Inclusive isolated electron/photon |                      | 29                          | 3.3           | 3.3                 | 20GeV/11 kHz    |
| Di-electrons/                      | di-photons           | 17                          | 1.3           | 4.3                 | 15GeV/2 kHz     |
| Inclusive isol                     | ated muon            | 14                          | 2.7           | 7.0                 | 6GeV/23 kHz     |
| Di-muons                           |                      | 3                           | 0.9           | 7.9                 |                 |
| Single tau-jet trigger             |                      | 86                          | 2.2           | 10.1                |                 |
| Two tau-jets                       |                      | 59                          | 1.0           | 10.9                | 20-30/2kHz      |
| 1-jet, 3-jets, 4                   | 4-jets               | 177, 86, 70                 | 3.0           | 12.5                | 180-75-55/0.6 k |
| $Jet * E_T^{miss}$                 |                      | 88 * 46                     | 2.3           | 14.3                | 50*50/0.4 kHz   |
| Electron * Jet                     | ŧ                    | 21 * 45                     | 0.8           | 15.1                |                 |
| Minimum-biz                        | as (calibration)     |                             | 0.9           | 16.0                |                 |
| TOTAL                              |                      |                             |               | 16.0                | 40 kHz          |

HLT reduce to <~200 Hz the rate to "permanent storage", keeping the thresholds energies at or very close to the LVL1

#### A possible strategy

| Selection signature                                                                                                | Examples of physics coverage                                                            |                                                                                                 |                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| e25i                                                                                                               | $W \to ev, Z \to ee,$ top production, $H \to WW^{(*)}/ZZ^{(*)},$ $W',Z'$                |                                                                                                 |                                   |  |  |
| 2e15i                                                                                                              | $Z \rightarrow ee, H \rightarrow WW^{(*)}/ZZ^{(*)}$                                     |                                                                                                 |                                   |  |  |
| μ20i                                                                                                               | $W \to \mu\nu,  Z \to \mu\mu,$ top production, $H \to WW^{(*)}/ZZ^{(*)},  W^{*}, Z^{*}$ |                                                                                                 |                                   |  |  |
| 2μ10                                                                                                               | $Z \rightarrow \mu\mu$ , $H \rightarrow WW^{(*)}/ZZ^{(*)}$                              |                                                                                                 |                                   |  |  |
| γ60i                                                                                                               | direct photon productio                                                                 | direct photon production, $H \rightarrow \gamma \gamma$                                         |                                   |  |  |
| 2γ20ι                                                                                                              | $H \rightarrow \gamma \gamma$                                                           |                                                                                                 |                                   |  |  |
| j400                                                                                                               | QCD, SUSY, new resonances                                                               |                                                                                                 |                                   |  |  |
| 2j350                                                                                                              | QCD, SUSY, new resonances                                                               |                                                                                                 |                                   |  |  |
| 3j165                                                                                                              | QCD, SUSY                                                                               | QCD, SUSY                                                                                       |                                   |  |  |
| 4j110                                                                                                              | QCD, SUSY                                                                               | QCD, SUSY ATLAS 2 x 1                                                                           |                                   |  |  |
| τ60i                                                                                                               | charged Higgs                                                                           | charged Higgs final selection                                                                   |                                   |  |  |
| µ10 + e15i                                                                                                         | $H \rightarrow WW^{(*)}/ZZ^{(*)}$ , SUS                                                 | $H \rightarrow WW^{(*)}/ZZ^{(*)}$ , SUSY                                                        |                                   |  |  |
| τ35i + xE45                                                                                                        | $\mathrm{qq}H(\tau\tau),W\to\tau\nu,Z\to$                                               | qqH( $\tau\tau$ ), W $\rightarrow \tau\nu,$ Z $\rightarrow \tau\tau,$ SUSY at large tan $\beta$ |                                   |  |  |
| j70 + xE70                                                                                                         | SUSY                                                                                    | SUSY                                                                                            |                                   |  |  |
| xE200                                                                                                              | new phenomena                                                                           | new phenomena                                                                                   |                                   |  |  |
| E1000                                                                                                              | new phenomena                                                                           | new phenomena                                                                                   |                                   |  |  |
| jE1000                                                                                                             | new phenomena                                                                           |                                                                                                 |                                   |  |  |
| 2µ6 + $\mu^+\mu^-$ + mass cuts rare b-hadron decays (B $\rightarrow \mu\mu X$ ) and B $\rightarrow J/\psi(\psi')X$ |                                                                                         |                                                                                                 | nd $B \rightarrow J/\psi(\psi')X$ |  |  |

#### W and Zs to calibrate the detector and make already important measurements

From cross-section, acceptance (h<2.5 and trigger) & luminosity  $\Rightarrow$  event rate .Assuming 100 days at 2 10<sup>33</sup> gives:

-5 10<sup>6</sup> Z $\rightarrow$ ee and 5 10<sup>6</sup> Z $\rightarrow$ mm to mass storage

-5 10<sup>7</sup> W $\rightarrow$ em and 5 10<sup>7</sup> W $\rightarrow$ mm "

#### Using the Z mass constraint (known to 2 10<sup>-5</sup>)

-calibrate the EM calorimeter and muon spectrometer

-calibrate the  $E_{T}$  miss scale

-measure the W mass to ~20 MeV/expt

using lepton +  $E_T$ miss evts ("transverse mass") -calibrate the jet scale using Z+jet events and **g** +jet evts (using  $p_T$  balance) Remember that:

-no inclusive  $Z \rightarrow jet-jet evts$  (QCD background) -no inclusive  $W \rightarrow jet-jet evts$  (but wait/top...) -no inclusive  $Z \rightarrow tt$  (QCD background...)

From WW, WZ, Zg ZZ,...in the final sate determine Triple Gauge bosons couplings and probe SM.

