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Lay-out of Lecture 2

• Magnetic fusion basics
• Different magnetic confinement schemes
• Plasma heating, control and fuelling
• The JET tokamak
• Magnetic fusion physics challenges 

– Macroscopic equilibrium and stability
• Ideal MHD
• Ideal MHD stability limits
• Disruptions
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Progress in magnetic fusion



Magnetic mirror
• Conservation of magnetic moment (adiabatic invariant)  

µ= ½ mv⊥
2/B = E⊥/B

– If B increases, E⊥ increases; but Etot= E|| +E⊥=const. E||
decreases

– At some point, particle cannot penetrate further into increasing B:  
v|| 0 and changes sign: ‘mirroring’

– Equivalent to a force on guiding center <F||> = - µ∂Β/∂z
– Particles with |v|||/|v⊥|>[Bmax/Bmin-1]1/2 are lost: loss cone in v-space



Particle drifts in toroidal machine
• Guiding center approximation
• Generic drift with force F: vD=F×B/(qB2)

E.s. force: vExB= E×B/B2                       (charge independent)
• If B is not uniform and B-field lines are curved: gradB and 

curvature drifts
vD = (½v⊥

2+v||
2)B×∇B/(ΩB2) (charge dependent, Ω=qB/m)



The need for additional plasma heating

Need to fill in ‘gap’ 
between ohmic 
heating region and a-
heating, where losses 
dominate



Neutral Beam Injection



NBI: neutralisation efficiency
• Neutralisation efficiency goes down for high energies: for 

large, dense plasmas we need to develop negative ion 
beams



Example of a modern ECRH system
TCV - Lausanne

• The sources: gyrotron tubes 
0.5MW, 2s, 6 at 82.7GHz and 3 at 118 GHz 



Example of a modern ECRH system
TCV - Lausanne

• Steering and injection 
into tokamak

Beams can be 
steered 
poloidally and 
toroidally 



Fusion plasma physics challenges
– Large power density and gradients 

(10MW/m3 ≈ 30’000×sun’s core), 
anisotropy, no thermal equilibrium

• Macro-instabilities and relaxation processes

solar flares, substorms

– Dual fluid/particle nature
• Wave-particle interaction (resonant, nonlinear)

coronal heating

– Turbulent medium
• Non-collisional transport and losses 

accretion disks

– Plasma-neutral transition, wall interaction
plasma manufacturing

Huge range in temporal (10-10 105 s) and spatial scales (10-6 104 m)



Progress in key areas is leading to next step 
burning plasma experiment

Wave-particle 
interaction

Turbulence 
and    

transport

Plasma /wall 
interaction

Macro-
stability

Burning plasma



Macroscopic stability: the MHD model



MHD plasmas: flux freezing and B-field 
diffusion (1)



MHD plasmas: flux freezing and B-field 
diffusion (2)



MHD equilibrium

• MHD equations with d/dt=0: j×B = ∇p
• Consequences

B • ∇p = 0 pressure is constant on magnetic surfaces 
j • ∇p = 0  current lies on magnetic surfaces

All quantities are flux functions: fct(ψ)

• Tokamak equilibrium is characterised by 
– Safety factor q=∆φ/2π, ∆φ=toroidal angle covered by field line 

to come back at same position
• If a<<R, q~rBtor/R0Bpol∝1/Ip

– Normalised pressure β=nT/(B2/2µ0)



MHD Stability in Tokamaks
– Destabilising forces

• Current gradients
• Pressure gradients combined with bad curvature (Rayleigh-

Taylor)

– Stabilising factors
• B-field line bending and compression (field lines tends to 

stretch)
• Good curvature

– Two classes of instabilities
• Ideal MHD

– η=0; fast time scale (µs): no hope for active control

• Resistive MHD
– η≠0; longer time scale (ms): hope for active control



MHD stability imposes limits on 
optimisation of fusion parameters

• Current limit
– Limits energy confinement time

• τE ∝ 1/q~Ip for fixed B-field
– Can be improved by shaping the plasma

• Limit in normalised pressure β ∝ nT/B2

– Limits fusion power for given B ($$$!)
• Pfus ∝ β2 B4

– Can be improved by shaping the plasma
• Density limit

– Limits fusion power
• Pfus ∝ n2〈σv〉

– Not fully understood, can be improved by peak radial profiles



Ex. of ideal MHD stability limits
• Ex. limit in β and current



Ideal MHD limits in shaped plasmas
– TCV tokamak (Lausanne): extend stability domain using 

high elongation discharges



Violation of ideal MHD stability: 
disruptions

• Sudden loss of stability: the plasma and the 
current carried by it are lost over fast time scale

JET



Consequences of disruptions
toroidal loop voltage…

Loop voltage
400 V at 3 MA

… creating Runaway Electrons
• RE have too high energy to be slowed down by collisions 

(σ~v-3), and keep being accelerated by residual E-field
• At very high energy confinement is lost and wall can be 

damaged



Disruption mitigation: TEXTOR tokamak



Consequences of disruptions: halo currents
– Currents flowing in plasma intercepted 

by conducting surfaces
– Ihalo ~< 30% Ipmax



Consequences of disruptions: large dB/dt

after disruption

equilibrium

E.g. in JET: dB/dt ~ 100T/s (radial, poloidal)
Poloidal field

Must avoid paths for induced current
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