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Lay-out of Lecture 3

* Magnetic fusion physics challenges (cont.)

— Macroscopic equilibrium and stability
* Resistive MHD 1nstability

« Example of a basic problem related to MHD in
tokamaks and in space: magnetic reconnection

— Plasma wall interaction
 Main 1ssues

e The divertor concept



Resistive MHD Instabilities:
ex. of active control

Active magnetic feedback with
sensors and power supplies
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Ideal or resistive? The sawtooth instability

Te
— Sudden, very fast losses ‘ 14%4m4e444
of energy and particles
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Magnetic reconnection
Change in B-field topology in the presence of plasma

Sun: flares,
coronal
mass
ejections

Fusion:

internal
relaxations

(strong
guide field




Plasma as a charged fluid

* Resistivity 1 = 0: plasma and B frozen together,
no reconnection

B B

» Resistivity 11 # 0: E+v X B=nj -2B can diffuse wrt plasma
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Reconnection is an open question

resistive time t, observed reconnection time
tokamaks ~1-10's 10-100 us
solar flares ~10%years ~20 min
substorms ~infinite ~30 min

 If B%-energy is converted to plasma flow

« v~v,=B/(u,mn)"> Alfvén speed; but t,=L/v, is far
too short to explain observations

» Which L? Model local geometry Pty

 Ex. Sweet-Parker model
. SR Plasma Outflow
top~(tgty)? still far too long! / E \v va




Examples of addressed questions on
reconnection

 (Can fast collisionless reconnection be
observed?

* Intermittent vs. steady-state reconnection?

* Origin of fast time scale, mechanism
breaking frozen-in law?



VTF reconnection experiment at MIT

Study plasma response to drlven reconnectlon

The VTF
device

..............

40-channels B-probe 45 heads L-pobe



VTF configuration
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Reconnection drive
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Calculated poloidal flux during reconnection drive

Foloidal magnetic flux function, ‘¥ '
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Measured response to driven reconnection
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What breaks the frozen-in law?

The frozen-in law 1s violated where EeB+0, diffusion region
EB/EB 0-1

' '
o 1 0.8 1

R [m] R [m]

¢ -10-10V
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Experimental
measurement

z [m]
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Generalized Ohms law:

E+v><B>;{ Q@i‘%

Would give o~c/,

too small (<10°) & far too small with strong
guide field, would give
Only off-diagonal terms (toroidal

can’t explain phase
o~c/a,
symmetry) = orbit effects



Results on addressed reconnection questions

— Can fast collisionless reconnection be observed?
* Yes, was directly measured in the lab

— Highly anomalous current: can’t even define resistivity as E/J#constant

— Can reconnection be intermittent with a steady drive?

* Yes: no steady-state, dynamical evolution of j(r) and
potential

— Ion polarisation current explains observed reconnection dynamics

— Origin of fast time scale for reconnection, mechanisms
behind breaking of frozen-in flux?

* V-p, (off-diagonal), kinetic effects, particle orbits



Back to tokamak problems:
coupling betwen sawteeth and NTM instability

— Small sawteeth are benign

 Redistribution only local

— o’s (or other fast particles,
e.g. created by ICRH)
increase sawtooth period

« Sawtooth crash, when
eventually comes, 1s much
larger, and triggers other
resistive instabilities (NTM)
that tear B-field structure over
large region, degrading
confinement
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Neoclassical Tearing Modes I

) ASDEX Upgrade, H. Zohm et al., PPCF 96
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* Once seeded, 1sland 1s sustained by lack of local current
* Two ways to tackle the NTMs
1) Avoid them by controlling sawteeth (1.e. keep their
period short) using ICRH

2) Replace missing current to actively stabilise mode



Avoiding NTMs

Use ICRH to modify current profile locally and de-stabilise
(i.e. reduce period of) sawteeth

Pulse No: 58934
Poae= 3 MW at 3.05 m / +90°
PZmE=3 MW at 2.78 m / —90°
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Precisely directed microwaves can stabilise NTMs

Steerable ECH/ECCD
launchers allow local
injection of current and
NTM stabilization
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Fusion plasma physics challenges

— Large power density and gradients
(10MW/m? = 30°000xsun’s core),
anisotropy, no thermal equilibrium

e Macro-instabilities and relaxation processes
solar flares, substorms

Dual fluid/particle nature

« Wave-particle interaction (resonant, nonlinear)
coronal heating

Turbulent medium

* Non-collisional transport and losses

accretion disks
< Plasma-neutral transition, wall interaction

gsmaanujacturing

Huge range in temporal (10-'° 210° s) and spatial scales (10-52>10% m)



Plasma wall interaction issues

Withstand power fluxes

— Limit erosion, melting
« Steady-state
* During transient edge instabilities

* Keep the plasma pure
 Minimise T retention

Exhaust

— Power
* Through solid surface in contact with fluid transfer medium

— Particles

e To avoid dilution in reactor *He ‘ashes’ must be removed

—>the divertor concept
— Separates plasma surface interactions from confined plasma



The need for a pure plasma

* Bremstrahlung radiation
P,= A Z2n2T"?

* Bremstrahlung limitation

will move up for higher Z
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The divertor concept

Poloidal limiter Tarcsdal diveriof

Diver b

Limiters

cloidal diverior

Torgidal limigr

Figure 1.5 Yarious limiter and divertor configurations: (1) the pefoidal ring lmiter, in the simplest
case, is a cincular annular plate of inner radius r = Gygap . outer radius @ = dygy. (2) The fosidal
divertar involves a diversion of the toroidal magnetic field near the adge, making for a configuration
analogons to that of the pofeidal ring mifer. (3) The toseidal Fmiter consists of a toroidally
symmetrc, protnding structure atiached to the wall, mounted at the outside of the vessel, as shown
here, or at the botom, eto. (4) The poleidal diverior involves a diversion of the poloidal magnetic
ficld near the edge, making for a torcidally symmetric configuration, analcgons to the toroidal

limiter [13].



[FaT=0]

Scrape Off Layer:
perpendicular flow
across B is balanc
by parallel flow
along open B-field
lines

The divertor concept

* Long connection length parallel
to B, (e.g. in ITER ~150m)
reduces parallel power flux
arriving to target

* Upstream T ~0.5keV, must be
reduced to ~5eV

2> At 5¢V o. <o

ionisation charge exchange

—>Energy is transfered from ions to
neutrals, which spread power

separatrix deposition (neutral cushion)

Plasma T is further reduced and e-i
flow recombination occurs

—>Plasma detachment

NN NANN

Criverior



Observation of plasma detachment
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Ex. of different divertor geometries
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