New Trends in Fusion Research Ambrogio Fasoli

Centre de Recherches en Physique des Plasmas Ecole Polytechnique Fédérale de Lausanne *and MIT –USA*

CERN Academic Training Programme

11-13 October 2004

Credits and acknowledgments EFDA, CRPP, MIT-PSFC, PPPL, LLNL, SNL, IFE Forum, US-DoE, ILE Osaka, ESA, NASA, LLE, UCB, UKAEA, with apologies to the many authors from whom I have 'stolen' viewgraphs EUROPEAN FUSION DEVELOPMENT AGREE EUROPEAN FUSION DEVELOPMENT AGREE

Lay-out of Lecture 5

- Burning plasma physics
 - Wave-particle interaction and self-heating
 - Experiments on the JET tokamak
 - Burn control
- ITER: the world burning plasma experiment
 - Main goals and parameters
 - Design
 - A fast track for fusion?

Fusion plasma physics challenges

- Large power density and gradients (10MW/m³ ≈ 30'000×sun's core), anisotropy, no thermal equilibrium
 - Macro-instabilities and relaxation processes

<u>solar flares, substorms</u>

- Dual fluid/particle nature
 - Wave-particle interaction (resonant, nonlinear)

coronal heating

Turbulent medium

• Non-collisional transport and losses

accretion disks

 Plasma-neutral transition, wall interaction plasma manufacturing

Huge range in temporal ($10^{-10} \rightarrow 10^5$ s) and spatial scales ($10^{-6} \rightarrow 10^4$ m)

Definition of a burning plasma

- Fusion power density = $P_{fusion} = \frac{1}{4}n^2 < \sigma v > E_{fusion} (n_D = n_T = n/2)$
- α power density = $P_{\alpha} = 0.2 P_{fusion}$
- Thermal energy W≡3nT
- Energy balance

 $\frac{dW}{dt} = \frac{P_{\alpha}}{\alpha - heating} + \frac{P_{heat}}{V} - \frac{W}{\tau_{E}}$

- Fusion energy gain: $Q \equiv P_{fusion}/P_{heat} = 5 P_{\alpha}/P_{heat}$
- α heating fraction: $f_{\alpha} \equiv P_{\alpha}/(P_{\alpha}+P_{heat})=Q/(Q+5)$

Q=1	f _α =17% breakeven	
Q=5	f _α =50%	
Q=10	f _α =67%	burning
Q= ∞	f_{α} =100% ignition	plasma

Progress in magnetic fusion

Fusion Triple Product - density (particles/m³) x confinement time (s) x Temperature (keV)

Specific properties of burning plasmas

- Large scale
 - Different scales involved in turbulence: impact on confinement
 - Different kinds of global instabilities
- Large isotropic population of fusion produced α 's
 - Effect on background plasma stability, turbulence and transport
 - Strong free energy source for instabilities in ∇p_{α}
- Dominant source of plasma heating is provided by α 's
 - Collisional heating of el. by α 's, removal of low energy α 's (ash)
 - Nonlinear coupling between α 's, plasma pressure profile, pressure driven current, turbulent transport, macro-stability, ...
 - Plasma profiles cannot easily be controlled from outside
 - Self-driven burn and thermal stability

Requirements for burning plasma studies

- Capability of generating and measuring fusion α's or other fast ions with similar energies (~MeV)
- Plasma size, I_p, B_T sufficient to confine them in reactor relevant regimes

The JET tokamak

 $R \sim 3m; B_T^{max} \sim 4T; I_p^{max} \sim 4MA$

D, H, He and D-T plasmas

a>∆r

Sources of fast ions in JET

- D-T reactions: 3.5MeV α 's
 - Q<1: ∇p_{α} , n_{α} < than in burning plasmas
- Ion Cyclotron Resonance Heating: ~MeV ions
 - $-P_{ICRH} \le 13MW$: ∇p_{fast} , $n_{fast} \ge$ than in burning plasmas
 - Ex.: ⁴He acceleration by ICRH at f_{ICRH}=3f_{ci}(⁴He)

At the core of burning plasma physics: the self-heating process

- If α orbits are confined and in the absence of instabilities, α 's give all of their energy to electrons (as $T_e \sim T_i$ and $m_e \ll m_i$), which then heat ions

Effect of collective instabilities on self-heating

Tion

•If instabilities are excited resonantly by α 's and reach large amplitude

- $\rightarrow \alpha$ redistribution / losses
- \rightarrow effect on fusion Q
- →wall damage

What kind of collective instabilities resonate with α 's?

Alfvén waves and Eigenmodes

- α 's resonate with Alfvén Waves
- AWs are driven unstable if
 →sufficient 'free'energy ∇p_α
 →α drive > plasma damping

 B-field and plasma frozen together; field lines are strings with tension and inertia → Alfvén wave propagation

In tokamaks: weakly damped Alfvén Eigenmodes (AEs)

Active and passive spectroscopy of AEs

- Passive
 - Modes observed if destabilised by fast particles (NBI, ICRH, *fusion* α 's)
- Active
 - In-vessel antennas drive low amplitude perturbations
 - Plasma response measured on B-probes: global modes \leftarrow Resonances

External antenna excitation of AEs

- Measure mode damping rate in the absence of resonant ions
 - understand damping mechanisms
 - conditions for weak/strong damping

Ex.: effect of plasma shape on damping

Shaping of cross-section → strong damping

No α-driven modes in world record fusion power discharge (P_{fusion}=16MW, Q~0.7)

Collisional α electron heating / slowing down

Figure 14.5(a). The fusion α -particles heat the plasma and the resulting increase in electron temperature is clear from the graph, the tritium fractions being shown in brackets. (b) Showing that the α -particle heating is similar to that achieved by comparable ion cyclotron heating of deuterium plasmas.

- Electron heating in D-T (Q<1)
 - No AE instabilities

 \rightarrow heating according to collisional theory

Classical slowing-down in the absence of instabilities (Q≤1)

γ-ray spectrometry in trace T experiment

Yes, if B-field structure adequate (classical theory OK)

New regimes for AE interaction with α's expected in burning plasmas (Q>5)

- Large scale (many particle orbits fit in plasma), large ∇p_{α}
 - 'Sea' of many small-scale, nonlinearly coupled modes
 - Ex.: Numerical *simulation* of α interaction with many AEs $\rightarrow \alpha$ redistribution

New regimes for AE interaction with α's expected in burning plasmas (Q>5)

- 'Sea' of many short wavelength modes
 - Need new tool to generate and study small λ modes
 - New antenna for JET

CRPP project

- At large Q, thermal runaway can occur unless
 - P_{loss} =W/ τ_E increases with T more rapidly than P_{α} =1/4n²< σv >E_{α}V
 - α 's are affected by losses/redistribution ($\tau_{slowing down} \ll \tau_E$)

Fole of AEs (unstable or externally launched) in burn control?

The essence of burning plasma physics is the coupling between different elements

– Full nonlinear coupling through effect of α 's

To understand burning plasmas we need a new device

Reaching the burning plasma regime

Q \rightarrow 5-10 for n $\tau_E \ge 10^{20}$ m⁻³sec (T~10 keV): need $\tau_E \sim 5$ - 10s

– Past and present expts.: empirical scaling of τ_E

ITER: the world burning plasma experiment

Official goal: *"To demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes."*

- Role of ITER
 - Burning plasma physics
 - $\begin{array}{l} P_{fusion} \geq 500 MW \ for \sim 500s \\ Q \geq 10, \ f_{\alpha} \geq 67\% \end{array}$
 - Integration of physics and technology
 - Demonstrate and test fusion power plant technologies and safety

R~6.2m; B_T~5.3T; I_p~15MA

Design - Main Features

Cutaway of blanket module

Water cooled, combination of copper for thermal properties, steel for mechanical, and Be first surface

Divertor cassette

Magnet system with cryogenic coolant pipes

ITER Heating systems

LH

NB Injector

	Startup		Scenario 1		Scenario 2		Scenario 3		Scenario 4	
	Power	Equat.	Power	Equat.	Power	Equat.	Power	Equat.	Power	Equat.
	[MW]	ports	[MW]	ports	[MW]	ports	[MW]	ports	[MW]	ports
NB	33	2	33	2	50	3	50	3	50	3
IC	20	1	40	2	20	1	40	2	20	1
EC	20	1	40	1(1)	40	1(1)	40	1(1)	20	0(1)
LH	0	0	20	1	20	1	0	0	40	2
Total Installed	73	4	133	6	130	6	130	6	130	6

IC

EUROPEAN FUSION DEVELOPMENT AGREEMENT

JET diagnostics

ITER diagnostics

ITER-Relevant Confinement Modes

• H-mode (High Confinement Mode)

- Associated with formation of edge transport barrier
- Reference mode for ITER inductive high-Q operation

Improved H-mode

 Candidate mode for inductive and/or hybrid ITER operation

• Advanced Tokamak (AT) mode

- Associated with formation of Internal Transport Barrier (ITB)
- Candidate mode for steadystate ITER operation

V. Mukhovatov et al., 30th EPS Conf. on Control. Fusion and Plasma Phys., July 7-11, 2003, St Petersburg, Russia

Physics Rules for Selection of ITER Design Parameters

- Q ≥ 10
- ELMy H-mode
- ITERH-98P(y,2) scaling
- Safety factor $q_{95} \ge 2.5$
- Electron density $n_e \le n_G$
- Normalized beta $\beta_N \leq 2.5$
- Strong plasma shaping
- Heating power P ≥ 1.3 P_{L-H}

 $Q = 5P_{\alpha}/P_{aux}$ reference operation mode for energy confinement time $q_{95} \propto (5B/I)(\kappa a^2/R)$ n_{G} = I/(πa^{2}), empirical limit $[\beta_{N} = \beta(\%)(aB/I)]$ κ_{sep} = 1.85, δ_{sep} = 0.48 $P = P_{\alpha} + P_{aux} - P_{rad}$ **P**_{L-H} is H-mode power thresh.

Q =10: ITER-simulation discharges on JET

SHAPING JET ITER "ITER shape" Pulse No: 53299 2.5MA/2.7T H_{98 (y.2)} 0.91 1.0 BNth 1.90 1.81 1.1 0.85 ne/new Zefi 1.5 1.7 Prad / Ptot 0.58 0.40 K, ð 1.74, 0.48 1.84.0.5 3.2 3.0 Qos τ_{pulse} / τ_E 15 110

10.01 4140 14

ITER Q=10 scenario main parameters

Parameter	Units	Value
Aspect ratio, A (= major radius/minor radius)	m/m	6.2/2.00
Volume, V	m ³	837
Surface	m ²	678
Cross-sectional area	m ²	21.9
On-axis toroidal field, B	Т	5.3
Plasma current, I _p	MA	15.0
Elongation/triangularity - separatrix		1.86/0.5
- 95% flux		1.75 / 0.35
Helicity safety factor at 95% flux surface, q ₉₅		3.0
Normalised beta, β _N	a se provinción de	1.77
Volume-averaged electron density, <ne></ne>	10 ¹⁹ m ⁻³	10.14
Factor relative to Greenwald, n/n _{GW}		0.85
Volume-averaged ion temperature, <t<sub>i ></t<sub>	ke V	8.1
Volume-averaged electron temperature, <t<sub>e></t<sub>	ke V	8.9
Volume-averaged toroidal beta, <β _T >	%	2.5
Surface-averaged poloidal beta, β_p	Sec. 1	0.67
α-particle power	MW	82
External heating power	MW	40
Radiated power	MW	48
Fusion power	MW	410
Margin on threshold power	MW/MW	1.6
Energy multiplication, Q		10
Energy confinement time (scaling), τ _E	S	3.7
Required energy confinement time scaling enhancement factor, $\mathbf{H}_{\mathbf{H}}$		1.0
Effective atomic number, Z _{eff}	Sec. Sec. 20	1.65

Ex. of ITER operating scenario

ITER as a physics experiment

 baseline ("conventional") scenarios: Elmy H-mode Q = 10 and "hybrid" scenario

single confinement barrier

physics: extrapolation of well understood regime to/in

- self heating
- physics of α-particles
- divertor & PSI
- identifiable milestone
- technology physics integration
- technology test & demonstration

advanced scenarios:

multiple confinement barriers

develop physics: (a range of scenarios exist)

- extrapolation of regime
- self-consistency of equilibria
- MHD stability
- compatibility with divertor requirements and impurity concentrations
- compatibility with satisfactory α-confinement
- controllability
- satisfy steady state objective
- prepare DEMO

K.Lackner, EFDA

Construction Schedule

Negotiations

- Began in July 2001 with the following aims draft Joint Implementation Agreement select ITER construction site agree how the procurement and costs will be shared define how the project will be managed and identify the DG and senior staff
- Provisional agreement on all the above achieved by Dec. 2003
- Deadlocked over choice of construction site.

A *fast track* for fusion?

- 1. On same time scale
 - ITER: physics and technology of a burning plasma
 - IFMIF: material tests
- 2. DEMO assumed ITER-like
 - Final integration and reliability development. Several DEMOs in parallel?
- **3. Commercial power**

From Chris Llewellyn Smith, Director of UKAEA Culham

PRELIMINARY

From Chris Llewellyn Smith, Director of UKAEA Culham

Construction Cost Sharing

Party	Share	Total
CN-KO-RF- US	10% each	40%
	Host: 36%+A	
JA + EU	Non-Host: 10%+B	40%
	(A+B=14%)	

 Host provides Buildings and Utilities. Remaining allocation (A+B) depends on site and final agreement.

- CN: magnet supports, feeders, correction coils, conductors, blanket (0.2), cryostat, gas injection, casks (0.5), HV substation, AC/DC (0.35), diag.
- EU: TF(0.5), conductors, cassette and outer target, vac.pumps, div. RH, casks (0.5), isotope sep., IC, EC, diag.
- JA: TF(0.5), conductors, inner target, blanket RH, EC, diag.
- KO: conductors, vessel ports (0.67), blanket (0.2), assembly tools, thermal shield, T storage, AC/DC (0.65), diag.
- RF: PF1, conductors, vessel ports (0.33), blanket (0.2), port limiters, flexibles, dome and PFC tests, Discharge circuits, EC, diag.
- US: CS(0.5), conductors, blanket (0.1), vac.pumps, pellet inj., vessel/in-vessel cooling, tok exh. proc., IC, EC, diag.

