New Trends in Fusion Research Ambrogio Fasoli

Centre de Recherches en Physique des Plasmas Ecole Polytechnique Fédérale de Lausanne *and MIT –USA*

CERN Academic Training Programme

11-13 October 2004

Credits and acknowledgments EFDA, CRPP, MIT-PSFC, PPPL, LLNL, SNL, IFE Forum, US-DoE, ILE Osaka, ESA, NASA, LLE, UCB, UKAEA, with apologies to the many authors from whom I have 'stolen' viewgraphs EUROPEAN FUSION DEVELOPMENT AGREE EUROPEAN FUSION DEVELOPMENT AGREE

Lay-out of Lecture 4

- Magnetic fusion physics challenges (cont.)
 - *Plasma wall interaction (cont.)*
 - Main issues and the divertor concept
 - Ex. of ongoing research: controlling edge instabilities
 - Choice of materials
 - Transport and turbulence
 - Non-collisional transport
 - How to limit the turbulence and its effect on transport?
 - Advanced tokamak operation: a promising route?
 - High gain, quasi steady-state

Fusion plasma physics challenges

- Large power density and gradients (10MW/m³ ≈ 30'000×sun's core), anisotropy, no thermal equilibrium
 - Macro-instabilities and relaxation processes

solar flares, substorms

- Dual fluid/particle nature
 - Wave-particle interaction (resonant, nonlinear)

coronal heating

Turbulent medium

• Non-collisional transport and losses

accretion disks

– Plasma-neutral transition, wall interaction *plasma manufacturing*

Huge range in temporal ($10^{-10} \rightarrow 10^5$ s) and spatial scales ($10^{-6} \rightarrow 10^4$ m)

Plasma wall interaction issues

- Withstand power fluxes
 - Limit erosion, melting
 - Steady-state
 - During transient edge instabilities
- Keep the plasma pure
- Minimise T retention
- Exhaust power and particles
- \rightarrow the divertor concept
 - Separates plasma surface interactions from confined plasma

Main elements of divertor principle are included in 2-D codes (steady-state)

- Strong parallel transport Fluid drifts Actual flux surface geometry
- Non-equilibrium radiation rates 2-D flow patterns
- Neutral recycling Recombination Detailed divertor structures

Erosion of surfaces Ablation during intense heat pulses

JET vessel in 1991

JET vessel with Mark I divertor in 1994

JET vessel with Mark IIGB divertor in 1998

JET vessel with Mark IISRP divertor in 2002

The problem of transient edge instabilities

Transient transport

• $P_{FUS} \propto p_{ped}^2$ - high pedestal very desirable

Kinsey 2003

- Pedestal maintained close to marginal stability to MHD instabilities (peelingballooning modes)
- Collapses intermittently, releasing power and particles beyond separatrix
- Edge Localised Modes, ELMs

Slides from G.Counsell, IKAEA

• Materials physics sets limit on allowable ΔW_{ELM}

Federici, 2003

- Some ELMs (Type I) also deposit energy & particles on first wall
- 10-50% ELM energy arrives at wall

Counsell, 2000

MAST

Could lead to melting of first wall (e.g. Be)

- Type I ELMs (at least) now also deposit energy & particles on first wall
- 10-50% ELM energy arrives at wall
- Localised deposition due to ELM structure

Kirk, 2003

Methods to control ELMs? An open field of research

Ways ahead:

- Reduce the pedestal height and gradient
- Move from coupled peelingballooning to peeling modes
- ⇒ Different type of ELMs (Small Type III)
- Gas puffing is a simple way to achieve this

Problem - reducing pedestal height also reduces core performance

Ways ahead:

- Add impurity species to edge plasma
- Increased radiation reduces conducted edge losses
- \Rightarrow Impurity seeded regimes

Potential problem -

• In some experiments (e.g. JET), confinement usually is reduced by impurity seeding

Ways ahead:

- 'Alternative' small ELM regimes with high confinement
- •Obtained at high triangularity, relatively low current, high density

Problem -

- Very narrow operating space
- 'Formula' different on each device

(2x higher NA)

I-coil segment (carbon tiles removed) Moyer, 2003

Ways ahead:

- 'Ergodise' edge plasma using perturbations from external coils
- Stochastic boundary control

Ways ahead:

- Control the ELM frequency by multiple shallow pellet injection
- Actively increasing ELM frequency reduces ΔW_{ELM}
- No apparent impact on confinement
- Can small pellets penetrate deep enough in a reactor?

What material for first wall and divertor?

• Experience with C from present day experiments

Long term fuel (T) retention

JET 10%

TFTR 13%

Equivalent ITER T limit (350g) would be reached in less than 50 shots

- Present understanding: Tritium is retained by codeposition with carbon, on the plasma facing sides or on remote areas
- Full C walls would give unacceptable retention of T
 Unless new techniques to remove co-deposited T are found

What material for first wall and divertor?

Details of ITER divertor geometry

Divertor Geometry

ITER

Openings allow free re-circulation of neutrals from inboard to outboard which gives detachment to be achieved in the outer channel without the need for excessive gas puffing.

Exhaust gas Pumped through slots in liner Dome provides protection for the pumping region components and contributes to baffling neutrals from reentering the main plasma.

The target is highly inclined to the field lines this reduces the heat flux at the strike point.

The protection plates at the lower end of the private region PFC together with the vertical targets form a closed "V" at the apex of each channel which aids detachment.

Fusion plasma *physics* challenges - Large power density and gradients $(10 \text{MW/m}^3 \approx 30'000 \times \text{sun's core}),$ anisotropy, no thermal equilibrium • Macro-instabilities and relaxation processes solar flares, substorms Dual fluid/particle nature • Wave-particle interaction (resonant, nonlinear) coronal heating Turbulent medium • Non-collisional transport and losses accretion disks

 Plasma-neutral transition, wall interaction plasma manufacturing

Huge range in temporal ($10^{-10} \rightarrow 10^5$ s) and spatial scales ($10^{-6} \rightarrow 10^4$ m)

Turbulence and non-collisional transport

- Confinement time $\tau_E \sim (size)^2 / \chi$; $\chi \sim (step size)^2 \times v$
- Collisional (*classical*) theory:
 - v = Coulomb collision frequency
 - (step size) = particle orbit size: what is it in a tokamak

Figure 9: 'Banana' shaped orbits of trapped particles

Turbulence and non-collisional transport

- But $\tau_E^{\text{meas}} \ll \tau_E^{\text{coll}} \rightarrow anomalous \text{ transport}$
- Anomalous transport is caused by *drift wave* micro-turbulence, generated by pressure gradients
 - Drift waves: universal instabilities associated with pressure gradients

$$\omega^* = k_y v_d \qquad v_d = \frac{T}{m\Omega} \frac{1}{n} \frac{dn}{dx} \equiv \frac{T}{m\Omega} \frac{1}{L_n}$$

Effect of drift waves on transport

- Waves give 'kicks' ($E \times B$) to particles \rightarrow transport
- Step size ~ λ , ν ~ (correlation time)⁻¹
- But small $\lambda \rightarrow$ weak transport: cannot explain observation!

- Theory: Nonlinear evolution of turbulence leads to radially extended structures which are responsible for large transport
- Possible cure: Shear flows driven by radial electric fields break these structures, reducing radial correlations, diffusivity, turbulence amplitude

Sheared flows cause enhanced confinement?

Transport barriers

C D Challis - The use of transport barriers inside tokamak plasmas 31st EPS Conf on Plasmas Physics, London 2004

Observed enhanced confinement

 Several tokamaks see indications of reduction of turbulence in the presence of *strong* shear flows (compared to growth rate of most unstable mode)

- Reduction of turbulence can lead to 'internal transport barriers'
 - Ex. electron ITB on TCV with strong (~3MW) ECRH

WE ARE CONFRONTING NEW CHALLENGES IN PHYSICS MEASUREMENTS

R.Goldston, PPPL Director, Review of Plasma Science and Fusion program by US National Academy of Sciences, '02

- More complex, non-linear simulations (SciDAC)
- Need new generation of diagnostics
 - Measure new parameters
 - New Physical scale (ion \Rightarrow electron gyroradius)
 - New Temporal scale
 - Increase Spatial Coverage
- Will require new technology such as imaging, lasers, etc.

→*Motivation for a specialised device*

The TORPEX device at CRPP

	Major radius	1m
	Minor radius	0.2m
	Magnetic field	B<0.1T
	Pulse duration	50-200ms
	Neutral gas pressure	10 ⁻⁴ -10 ⁻⁵ mbar
	Injected power@2.45GHz	P _{RF} <50kW
	Plasma density	$n \sim 10^{17} \text{m}^{-3}$
	Electron temperature	T _e ~10eV
B = 0.0875 T with 28 Coils at I = 400 A	Gas	Ar. H. N

- Plasma produced by RF power f=2.45GHz $\sim f_{ce}{=}eB/m_{e}$
- Field configuration:

 $B_{toroidal} + B_{vertical}$

Relation between profiles and wave spectra

Interchange instability: Vn and VB co-linear

Reconstruction of 'structure' dynamics in drift wave turbulence Conditional average sampling of density fluctuations

Gas: Ar, ref=FIX4, filter: 1kHz, I_{sat} , τ_w =80 μ s τ =-500 μ s 10 105 5 0 Ð -5 -5 -10 -10 -10 10 -10 10 n ß

Density

Density fluctuation structures f > 1kHz

Open questions on turbulence and transport

- Development of drift waves from linear to turbulence
 - Control of gradients
- Self-generated macro-structures
 - Mechanisms for creation and growth
- Related transport
 - Diffusive, 'large' events, statistics, universality
- Ways to reduce turbulent transport
 - Shear flows imposed from outside (waves, external E-field,...)

Advanced tokamak concept

- Can fusion power / cost be improved ?
 - Improve β -value ($P_{fus} \propto \beta^2 \, B^4)$ and confinement
 - Tailor discharge to increase β
 - Reduce transport by strong rotation and shear
- Can a tokamak be turned into a steady-state (or very long pulse) device?
 - Need ways to generate 'non-inductive' current

Localised current drive by Electron

 Waves propagate in vacuum, so antenna can be far from the plasma

 Inside the plasma the waves propagate up to a critical density (related to the plasma frequency) and are absorbed near the cyclotron resonance or its harmonics

Fully ECCD driven discharge in TCV Fully non-inductive discharges 210 kA sustained in steady state by 2.7 MW co-ECCD 200 $IRn/P(10^{20} A - M^{-2} - W^{-1}) =$ Plasma current (kA) 0 7.3 x 10⁻³ EC power (MW) 2 0 Loop voltage (V) -2 20 Current in Ohmic coil (kA) 4 2 Line-averaged density (10¹⁹ m⁻³) 0 Peak temperature (keV) 5 2 Carp Commission ത്തത്താ Internal inductance 1 0 2 3 Time (s)

Lower hybrid current drive ($\Omega_i < \omega < \Omega_e$)

Lower Hybrid coupling requires n_{||} >1 (Brambilla, SWAN)

Phased array or waveguides

Ray tracing: the accessible waves cross the plasma and can undergo several reflections at the edge before being absorbed.

Codes by: Cardinali, Bonoli, Ignat, Valeo, Harvey, Takase (Figures from Giruzzi)

Damping of LH waves forms a parallel energetic electron tail in the distribution function via Electron Landau Damping.

This asymmetry constitutes the non-inductive current (Fisch, Karney)

Lower hybrid current drive: results

 Plasma current initiated and ramped up by LHCD

- Plasma current maintained in steady state:
 - JET; 3 MA, 4 s
 - TRIAM-1M; 20 kA, 2 hr

- 2-minute-long discharge at Ip = 0.8 MA
- Injected energy = 290 MJ

The self-generated bootstrap current

Needs a strong pressure gradient

J_{bs} ∞local pressure gradient

Reminder: the safety factor q

q = 1 field line

Magnetic shear = r/q(dq/dr)

- Role of negative shear region
 - Helps creating transport barrier in the core by producing strong (sheared) rotation

Typical magnetic topology

Tokamak temperature and density profiles are typically peaked

 Toroidal electrical conductivity scales as T_e^{1.5} (also orbit effects) `natural' current profile peaked → provided by inductive E-field

- q-profile is monotonic q ≈ rB_T/RB_P ∫B_p.dI = μ₀ ∫j.da
- Magnetic shear is positive

plasmas cross-section

C D Challis - The use of transport barriers inside tokamak plasmas 31st EPS Conf on Plasmas Physics, London 2004

Advanced tokamak regime

Advanced tokamak regime in JET

DEVELOPMENT

AGREEMENT

7/2

FUSION

Internal transport barriers (ITBs)

EUROPEAN

EFDA

major radius (m)

Real-Time Control of ITBs in JET

JET: 1.8MA/3.4T

•ITB is controlled during at \20 with 100% of non inductive current

- P_{LHCD} to slow down q(r,t)
- P_{NBI} controlled by Neutron
- $\bullet\, P_{\text{ICRH}} \, \text{controlled} \rho b / \!\!\!\!/ _{\text{te}} \text{at}$ the ITB location

•More stable regime and mi impurity accumulation with RT control

Mazon D et al 2002 PPCF 44 1087

Advanced tokamak regime

A HIGH PERFORMANCE PLASMA WITH FULL NON-INDUCTIVE CURRENT DRIVE AND 80% BOOTSTRAP FRACTION IN JT-60U

- H₈₉~3.5, HH_{98y2}~2.2, β_N~2, β_p~2.9, f_{BS}~80% for 6τ_E with full non-inductive CD
- Current profile was largely determined by the bootstrap current, and was nearly stationary

Optimisation of fusion power plant based on advanced tokamak concept

The U.S. ARIES — RS system study

The Japanese SSTR system study

Attractive features

- Competitive cost-of-electricity
- Steady-state operation
- Maintainability
- Low-level waste
- Public and worker safety

	Conventional	AT
Size, major radius (m)	8	5
COE ¢/kWhr	~13	~7
Power cycle	Pulsed	Steady state

$$coe \propto \left(\frac{1}{A}\right)^{0.6} \frac{1}{P_e^{0.4} \beta_N^{0.4} (\frac{n}{n_{limit}})^{0.3}}$$

The plasma transport matrix

• Similar transport mechanisms occur for heat and particles, and other plasma quantities, although some off-diagonal terms may play role

