Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle Astrophysics and Cosmology (INPAC)

Search for Dark Matter Lecture 4: WIMPs Direct Detection

Cryogenic detectors Current status Future

Deciphering the Nature of Dark Matter

Weakly Interactive Massive Particles

Particles in thermal equilibrium

+ decoupling when nonrelativistic Freeze out when annihilation rate ≈ expansion rate

$$\Rightarrow \Omega_{x}h^{2} = \frac{3 \cdot 10^{-27} cm^{3} / s}{\langle \sigma_{A} v \rangle} \Rightarrow \sigma_{A} \approx \frac{\alpha^{2}}{M_{_{EW}}^{2}} \quad \rho_{\chi} \approx \frac{M_{_{EW}}^{2} T^{3}}{M_{_{Pl}}}$$

Generic Class

Cosmology points to W&Z scale

Inversely standard particle model requires new physics at this scale

(e.g. supersymmetry) => significant amount of dark matter

We have to investigate this convergence!

A loop hole: Gravitinos

Can be the Lightest Supersymmetric Particle (LSP)

Unfortunately no good method for detection

(purely gravitational interaction)

Regain of interest because of leptogenesis

e.g. W. Buchmuller et al hep-ph/040614 High reheating=> overproduction of gravitinos, whose decays inject too much entropy Ways out: make it very heavy >50TeV/c² or make it the LSP!

Constraints in SSM parameters

Decay of next to lightest supersymmetric particle (NSP) occurs after Big Bang Nucleosynthesis and injects entropy: too much would destroy agreement between CMBR and BBN synthesis results

$$\eta_{CMB} = \frac{n_B}{n_{\gamma}} = 6.1 \frac{+0.3}{-0.2} 10^{-10} \qquad \eta_{BBN} = \frac{n_B}{n_{\gamma}} = 5.9 \pm 10^{-10}$$

Possible if

$$\Omega_{NSP} \le 10^{-2} \Omega_b h^2 \approx 10^{-4}$$

Same exercise and indeed regions of parameter space are allowed (Ellis et al., hep-ph 0312262)

Note: we loose the naturalness of the cross section

Except maybe in specific gauge coupling models (W. Buchmuller et al Phys. Lett B 574 (2003) 156)

$$\Omega_{3/2}h^2 \approx 0.05 - 0.2$$

Direct Detection

Elastic scattering

Expected event rates are low (<< radioactive background) Small energy deposition (≈ few keV) << typical in particle physics Signal = nuclear recoil (electrons too low in energy)

Background = electron recoil (if no neutrons)

Signatures

- Nuclear recoil
- Single scatter ≠ neutrons/gammas
- Uniform in detector

Linked to galaxy

- Annual modulation (but need several thousand events)
- Directionality (diurnal rotation in laboratory but 100 Å in solids)

Background Limited!

Aggressively tackle the background	Statistical method	Actively reject the background
State of the art: Heidelberg Moscow Extreme proposal: GENIUS 12m Ø liq. N ₂ tank 10 ⁴ improvement on current level	<list-item></list-item>	Active rejection with the best possible discrimination <= Best technology signal to noise no dead region/tails As much information as possible 12 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Cryogenic Detectors

Principle: Phonon mediated detectors

Goals

Sensitivity down to low energy

Phonons measure the full energy (no ionization yield, quenching factor)

· Active rejection of background: recognition of nuclear recoil

CDMS Background Discrimination

1334 Photons (external source) 233 Electrons (tagged contamination) 616 Neutrons (external source) _Ionization Threshold 80 100Recoil Energy [keV] Detectors provide near-perfect event-by-event discrimination against

Surface electrons ("betas")

Ionization collection has to be at small voltage

Drift in electric field creates Neganov-Luke phonons e.g. at 3 V total voltage already as many phonons created in drift as original ones

Ionization carriers are created hot

They can back diffuse in the field and be trapped on electrode

Dead layer of the other of a few 10μ m where ionization is not fully collected

Ways out

Surface amorphous silicon layer: larger gap=> partial reflection Tom Shutt

1999 Run Ge BLIP Data Set

Fiducial region

BLIP 3 BLIP 4 BLIP 5 BLIP 6

Entire 45 live days operation Ge BLIPs = 12.4 kg-days

Gamma and electron bands well separated from NR band NR candidates are truly NR's

See a total of 13 events > 10 keV → ~ 1 event/kg/day

Even though this event rate is in the region of the DAMA signal,

cannot be WIMPs

 <= 4 multiple events Neutrons (17 m.w.e.)

CDMS and DAMA Feb 2000

EDELWEISS

Similar technology to CDMS I

Deep underground (Frejus) 30 cm parafine, 20cm Pb ,10 cm Cu No active veto

2 events which limit their sensitivity (neutrons?)

Zeplin

ZEPLIN I

- Recombination allowed
- Only scintillation signal measured
- •Discrimination is based on pulse shape

Unfortunately no calibration underground

CERN 1 July 2004

CDMS II strategy

3 elements

- Go deep underground (Soudan)
- Careful Neutron shielding strategy
 Athermal phonon sensing to get more information about the events

Experimental Setup in the Soudan Mine

CERN 1 July 2004

CDMS II Shielding

Active muon veto

40 cm outer polyethylene Removes neutrons from (α,*n*)

22.5 cm lead shielding

10 cm inner polyethylene Reduces neutrons from muons

Copper cryostat

Really Cool Detectors: ZIPs

250 g Ge or 100 g Si crystal $1 \text{ cm thick } \times 7.5 \text{ cm diameter}$ Photolithographic patterning Collect athermal phonons

rejection of events near outer edge

1 μ tungsten $\textbf{380}\mu$ x $\textbf{60}\mu$ aluminum fins

CERN 1 July 2004

ZIP Detector Phonon Sensor

W Transition-Edge Sensor: a really good thermometer

The ZIP Detector Signal

Charge & Phonon signals occur on a similar timescale 20 keV (true recoil energy) in a Si & Ge ZIP

(EXCELLENT S/N FOR 20 KeV TRUE RECOIL ENERGY)

^{133}Ba γ & ^{252}Cf neutron calibrations

Use phonon risetime and charge to phonon delay for discrimination of surface electrons "betas"

First Run of CDMS II at Soudan

October 2003 - January 2004 run of "Tower 1"

Same 4 Ge (1 kg) and 2 Si (0.2 kg) ZIPs run at Stanford Photon and electron rejection both better than proposal 62 "raw" livedays, 53 livedays after cutting times of poor noise, etc.

Cuts and Efficiencies

Defined by calibration samples Blind analysis: data on low-yield events from WIMP-search run `in the box' until cut definitions completed

Opened box on March 20th

WIMP search data with Ge detectors

In 92 days between October 11, 2003 and January 11, 2004, we collected 52.6 live days - a net exposure of 22 kg-d after cuts Below data are shown before (left) and after (right) timing cuts

With Optimal Code

Formally not blind

Because we discovered the error after opening the box Howver cuts determined only from calibration data.

Resulting Experimental Upper Limits

Upper limits on the WIMP- nucleon cross section are 4×10^{-43} cm² for a WIMP with mass of 60 GeV/c^2 Factor of 4 below best previous limits (EDELWEISS xxx) Factor of 8 below ····CDMS-SUF ···· Incompatible with DAMA signal if "standard picture" but many alternatives Excludes large regions of SUSY parameter space under some frameworks Bottino et al. 2004 in yellow Kim et al. 2002 in cyan

Baltz & Gondolo 2003 in red

Projected CDMS Sensitivity

2nd Generation

Check DAMA (NaI)

Libra (Rome), ANAIS (Spain) XMASS

Cryogenic Detectors

CDMS II, EDELWEISS II, CRESST II Similar reach with complementary assets

+ test new technologies

Naked Ge detectors (Genino) Xenon Ionization + Scintillation

CRESST

SUSY Calculations

Direct Detection: History & Future 90% CL Limit on Cross section for 60 GeV WIMP (scalar coupling)

Going to Large Masses

With *≈* event by event discrimination

2 routes

- Extrapolate cryogenic technologies (demonstrated leaders)
 - surface electron reduction
 - increase mass
 - simplify technology

Liquid Xe : ionization +phonon

Hope that it scales "gracefully" to large masses) But main parameters of the technology have not yet been measured

Simulation of limits based on our extended Feldman-Cousins likelihood ratio test

2 approaches to Xenon

CERN 1 July 2004

Directionality

Essential if we have a signal

Recoil ≈ 100Å in solid or liquid

- Low pressure gastime projection chamber (DRIFT) Clever trick of charge exchange on CS₂ to limit diffusion main problems: mass 170g/m³ ratio of active mass/inert mass shielding (cf HELLAS)
 Phonon directionality: very hard
- Mechanical recoil very very hard

DRIFT setup

- Low Pressure CS_2 (40 Torr) 1 m³, 0.167 kg, 20 micron diameter wires 2 mm pitch.
- 1 mm track for nuclear recoils
- Many calibration runs with 55 Fe (5.9 keV X-rays)
- Neutron Calibration with ²⁵²Cf.
- Polypropylene shielding (~ 50 cm).
- Dark matter run started.
- Energy threshold 15 keV.

