Highlights from the VTX session

N. De Groot, A. Besson, R. Richter, L. Andricek, H. Niemec, G. Gaycken, A. Finch, P. Luzniak, U. Koetz

M. Caccia & M. Winter

- R&D reports; four technologies:
 - CCD
 - CMOS
 - DEPFET
 - SOI
- physics studies:
 - impact parameter as a geometry & material figure of merit
 - stop production & Higgs BR as physics benchmarks

CCD highlights

First Column Parallel readout architecture + read out chip up & runnin

- clocked @10 MHz (TESLA specs: 50 MHz)
- clock amplitude ~ 2 V (spec: < 3 V)
- noise: 60 e- (signal > 1000 e-/pixel)
- response to ⁵⁵Fe 5.9 keV X-rays observed

Wire/bump bond pads

Integration & test foreseen on a short time scale

CMOS hot news

Uniformity of real scale sensors

- 19.4 x 17.4 mm², ~ 1 Mpixels, 120 μm thick
- efficiency ~ 99%; σ ~ 2.5 μm
- baseline for the **STAR** VD upgrade (2006); important items for the LC applications:
 - 100 MHz clock; 0.25 μm technology
 - large system integration & test in a real experimental conditions

No-epitaxial layer techn. assesse

- two ≠ prototypes tested
 (20 & 40 μm pitch)
- S/N > 20 @ 10 °C
- efficiency > 99.5%; σ ~ 2.5 μ m
- radiation tolerant at 200 krad & 10¹¹ n/cm²

First test on 15 µm backthinned chips expected in November

DEPFET advances

First prototypes for charged particles produced & dummies backthinn

- Circular and linear DEPFETS up to 64 x 128 pixels minimum pixel size about 25 x 25 µm²
- technology assessed
- Line control chip ready (switcher)
- Readout Chip back from the foundry soon

- dedicated thinning technology assessed
- 50 μm thickness + reinforcing rims
- Handling of etched wafers and diced thin chips is safe and easy

Full chain integration & Large pixel array production in 2004

SOI hot news

First prototype on high-resistivity substrate produced! Sensitivity to m.i.p. assessed

- SOI on high resistivity FULLY DEPLETED substrate; nmos + pmos in the front e
- 8 x 8 pixel matrix; pitch: $140 \times 122 \mu m$
- simple front-end architecture inherited from the 3-T CMOS imager
- dynamic range up to 300 m.i.p./pixel

Processing of an imaging ladder 72 x 24 mm², 160 μ m pitch planned for 2004

Physics benchmarks

Goals: estimate the effect of

- material budget
- layer geometry & alignment
- pixel pitch
- readout characteristics

as time goes by conceptual design

engineering designing small scale prototyping

Tools:

- basic impact parameter analysis
- performance of tagging algorithms
- selected "VD sensitive" channels
 interaction with the physics teams