
Mediating Better Answers

Talk by: Andy Cooke
Collaborators: Alasdair Gray, Lisha Ma,

and Werner Nutt
Heriot-Watt University

Current Situation

All Insertables can stream
Continuous queries get complete answers
more often ☺
Easier mediation as more chance of
complete republishers being available. ☺
Republishers are always complete ☺

Current Situation
Some answers to queries are adventurous:

e.g. 3 publishers, full views: LP, LP, LRP
“latest” consumer chooses the closest, not the most
complete => incomplete/ wrong answer

e.g. 2 publishers: SP, LP with full view
LP isn’t complete anymore (neither is the answer)

e.g. LP with partial view
consumers can only use LPs with full views
empty set is returned

Problem: user can’t find out that R-GMA was
adventurous

What’s next?... better answers!
Next Steps:

RGMAWarnings
Improve answers to one-time queries

Future Steps:
Improve answers to continuous queries
Republisher Hierarchies
Support More Queries?

RGMAWarnings about Answer Quality!
java.sql.SQLWarnings can be retrieved
from Connection, Statement or ResultSet
objects:

“Provides information on db access
warnings”
“Silently chained to the object” (Java API)

java.sql.ResultSet

getWarnings(): SQLWarning
clearWarnings()

SQLWarning

getNextWarning()
setNextWarning()

SQLException

getMessage()

RGMAWarnings about Answer Quality!
RGMAWarnings could be attached to ResultSets.

e.g. “answer might be incomplete: …”,
“answer might be wrong: …”

Is chaining needed? (I don’t think so)
care needed to ensure backwards compatibility
need to design useful messages
need to identify all cases where answer might be
incomplete

edg.info.ResultSet

getWarning(): RGMAWarning

RGMAWarning RGMAException

getMessage()

Improving Answers to One-Time Queries

Opportunity now to return better answers,
as all insertables stream.
Users can now be informed of quality, with
the help of RGMAWarnings.

Strategy:
Always try to use complete publishers that
have full views
Otherwise, merge answers from incomplete
publishers …may still get safe answer!

Example 1: PublisherDescriptions
Problem:

Consumers get ServletConnections to relevant
publishers from the registry
Would like to identify the republishers, but can’t!

Solution:

wrap isRepublisher flag plus ServletConnection
inside a PublisherDescription

PublisherDescription

ServletConnection
isRepublisher

Example 1: PublisherDescriptions
e.g.: LP, LP, LRP registered (all with “full” views)

Currently: consumer queries the closest publisher

Using PublisherDescriptions:
Consumer identifies one complete LRP, and
two incomplete LPs.
So query the LRP, and get a complete answer

In future, PublisherDescriptions could hold other
useful information, e.g. views, retention periods.

Example 2: No Complete Publishers
Can safe answers be returned even when no
complete publishers are available?

e.g. Query two LPs (full views), and merge…
How safe is the answer? It depends…

e.g. aggregation => “answer might be wrong”
e.g. join => “answer might be incomplete”
e.g. simple selection => no warning needed ☺

Can extend to cases where LPs are not full.
Question: is there a use case for this?

Problem:
A producer is complete if there are no other
producers with overlapping views.
Consumer needs more information from registry

Solution:

wrap otherTypesRegistered flag plus
descriptions into RelevantPublisherInfo
notify Consumer if situation changes

RelevantPublisherInfo

boolean: otherTypesRegistered
Vector: publisherDescriptions

RelevantPublisherInfo info = registry.registerOneTimeQuery()

Example 3: Producer Completeness

e.g. 2 producers registered: SP and full LP
Consumer discovers that LP is incomplete as
otherTypesRegistered is true.
Query LP, and set RGMAWarning, if the answer
might be incomplete or wrong.

Using producers for answering one-time queries
is tricky!

Example 3: Producer Completeness

When can queries be answered by publishers
with partial views?

If query condition implies view condition, e.g.
query: “select * from cpuLoad where site = ‘RAL’”,
view: “where site = ‘RAL’”

If producer’s database maintain foreign keys for
the attributes in the join condition,

so things that logically belong together are stored
together

Some conditions exist for aggregate queries

Example 4: Partial Views

Conclusions: One-Time Queries

Complete Publishers with full views have all the
tuples needed for a complete answer.
Consumer needs to work out completeness:

send RelevantPublisherInfo to Consumer, which
contains PublisherDescriptions
Notify consumer when situation changes.

Safe answers can still be returned, even when
Publishers don’t have all the tuples.

RGMAWarnings if incomplete or adventurous!

Improving Answers to Continuous Queries
Can Continuous Consumers use republishers?

need to avoid duplicates and tuple loss...

Problem1: Need to figure out how to alter plans:
when publisher drops out
when publisher becomes available

Problem 2: Transition from old plan to new plan
use retention periods
views
plus snapshot table

to avoid duplicates/ loss

Example: Republisher Drops Out
Scenario: 3 SPs, one “full” LRP registered

Consumer streams from LRP, as it is complete.
Backup plan: stream from 3 SPs.

What if the LRP stops responding?

Idea 1: when registry calls removeProducer(),
switch plans.

...but tuples might be lost if
retention period is too short!

Example: Republisher Drops Out
Idea 2: Consumer waits almost as long as the
smallest retention period, before switching plan.

no tuples are lost…

retention periods should be registered.
alter API so that retention period can’t be
changed or set to zero – otherwise this won’t
work!

… but duplicates could be received!

Example: Republisher Drops Out
Idea 3: Keep a latest snapshot when switching
plan,

from registered views of each producer, can
work out when to stop looking for duplicates

… duplicates avoided!

consumers need to keep a latest snapshot.
consumers need to know registered views of
producers.

won’t work if producer views overlap!

Example: Republisher becomes available

Scenario: 3 SPs
Consumer merges streams from each SP.

What if a republisher becomes available?

Idea : Use a latest snapshot table.
Start streaming from RP and stop SP streams.
During transition, use table, plus views, to know
when to stop filtering for duplicates.

… duplicates avoided!

Conclusions: Continuous Queries
Continuous queries could use republishers…

more efficient use of network bandwidth ☺
evolving plans as registry changes is hard

Tentative solution:
use retention periods to avoid tuple loss
use views/snapshot tables to avoid duplicates?
Alter API to avoid changing retention periods.
producer views shouldn’t overlap.

…stepping stone towards supporting hierarchies

Republisher Hierarchies
Republisher Hierarchies may help to:

Reduce network traffic
Improve the max republishing rate

as less threads!
Share load across publishers

as more choice for consumers.

Republisher Hierarchies for LCG
LCG would like to collate info about jobs that
ran into a central db.

System should recover if a site goes down
temporarily, without loss of tuples.

Short-term:
hard-wire a hierarchy (site RPs, global RP)
some code changes are needed.

Longer-term:
automatically configure hierarchies.

Tier 1 Site
Worker Node

Post Job Script

streamProducer

Worker Node

Post Job Script

streamProducer

RGMA
Server

Tier 1 Site
Worker Node

Post Job Script

streamProducer

Worker Node

Post Job Script

streamProducer

RGMA
Server

Grid Operations Centre

RGMA
Server
Global
Archiver

Site
Archiver

Site
Archiver

Short Term: Hard-wire a Hierarchy
Currently: Insertable has responsibility for
keeping socket channel alive:

if channel found to be dead, then on next insert,
new channel is created.

Code change: if DBP’s buffer fills up, then
note the date/time of next tuple to send
when connection re-created, pose db query to
retrieve outstanding tuples, and send these

Longer Term: Dynamic Hierarchies
Dynamic hierarchies would:

sense when new sites came on-line
recover if any site archivers went down.

The problem is much tougher!
a logic puzzle: figuring out automatically which is
the most efficient hierarchy, and adapting this as
publishers come & go
protocols needed that avoid tuple loss/duplicates
as plans change (see earlier)

What’s next?... better answers!
Next Steps:

RGMAWarnings
Improve answers to one-time queries

Future Steps:
Improve answers to continuous queries
Republisher Hierarchies
Support More Queries?

