
OGSA Logger and GMA

1. Introduction
We see the Information and Monitoring services as having a fundamental position in
OGSA and in any Grid. To demonstrate this we need to show how other services can be
implemented as a thin layer on top of an Information and Monitoring service. Here we
show how a logger system can be layered on top of GMA where we make use of the
OGSA Logger System (Version 9) Document https://forge.gridforum.org/projects/ogsa-
wg/document/OGSA_Logger_System_V9/en/1.

We have taken the basic functionality from section 2 and 2.1 of this Logger document
and show how GMA can provide this. We have chosen to work from the basic
functionality on the assumption that the detailed services listed in section 2.2 and
described in that document can be adjusted a little to provide equivalent functionality, if
this brings overall economies of a simpler OGSA.

The GMA services are described at rather a high level in the GMA Service Description:
https://forge.gridforum.org/projects/ogsa-wg/document/GMA_service_description/en/1.
The level is high because this is meant to be a contribution to the OGSA document,
which is not meant to go into details of service descriptions. In addition we suggest you
look at http://www.r-gma.org/ for a description of R-GMA and at a recent paper
presented at COOPIS 2003 that will be appearing in an extended form in the new
"Journal on Semantics of Data" (Springer LNCS series,
http://lbdwww.epfl.ch/e/Springer/). Meanwhile a version exists at:
http://www.cs.tcd.ie/coghlan/pubs/HeriotWatt-coopis-paper-01072003.pdf. This COOPIS
paper is especially relevant in the case of the OGSA Logger and GMA because it
concentrates on the point of view of streams of data.

This document relates to R-GMA, which is a relational implementation of GMA. When
producing R-GMA we made one significant addition to GMA. We chose to provide a
mediator/broker to find suitable producers/suppliers/publishers of information. This has
allowed us to hide the registry/directory mechanism, which is why it is not discussed in
the OGSA Information and Monitoring Service Description document. This choice makes
the system much easier to use as it only offers very simple interfaces.

2. Nomenclature
The GMA document (http://forge.gridforum.org/projects/ggf-editor/document/GFD-
I.7/en/1) talks about producers, consumers and “compound producer/consumers” while
R-GMA introduces archivers. To avoid this last confusing term, we will refer to R-GMA
archivers as republishers. (However our R-GMA documentation is still inconsistent, as
we cannot change APIs overnight.)

3. R-GMA in a nutshell
1. Producer Service. This is currently implemented as 3 distinct APIs though we

plan to move it to a single service with properties. The 3 APIs offer a way to
handle streams of data with different persistency characteristics. The
StreamProducer uses an in-memory data structure while the DataBaseProducer
also supports historical queries and the LatestProducer offers just the latest
information for any primary key. All Producers support streaming.

Field Code Changed

Deleted: complex

Deleted: , which does not roll off the
tongue very well

Deleted: and therefore prefer to use
the term publisher instead of producer.

2. Consumer Service. This takes a query and locates the best Producers to use in
order to answer the query and then carries out that query. Queries are of 3
different types matching the three kinds of producer. For example, if you pose a
Latest query, it will be answered by one or more LatestProducers.

3. Republisher Service. This is called an Archiver in our current documentation –.
The Republisher is a joint Consumer/Producer. Republishers can be used to
produce a more efficient system with a better response by reducing the volume
of data being transferred. As all Producers now support streaming, it is possible
to join the components into different topologies according to the need.

4. What are the special requirements of a logger
system?

R-GMA appears to meet all the requirements listed in the OGSA Logger document
though the correspondence between R-GMA components and OGSA Logger ones is not
as simple as one might have hoped. An R-GMA Consumer corresponds roughly to a
LogBrowseSession and a Producer corresponds to a LogStreamA with a
LogStreamConnection . 2.1.2 requests different persistency mechanisms. R-GMA offers
3 kinds of Producer as indicated above. For the StreamProducer you can specify a
minimum retention period. Data will be kept for at least this period of time. Data are also
kept until they are read by existing Consumers. The DataBaseProducer and
LatestProducer both offer a clean-up mechanism to delete all data matching a certain
pattern. In fact the only use that is made for this is to clean up old data (i.e. only using
information in the timestamp).

2.1.3 asks for support for sequential reads and writes. The R-GMA Consumer offers this.

2.1.4 asks for data to be read in sequence. R-GMA Consumers of streams do this. If the
Consumer accesses information from a DataBaseProducer or LatestProducer the time
ordering is by the time stamp associated with the data when it was first written.

2.1.6 asks for a stateful read cursor. R-GMA allows traversal over a set of records. It is
unaffected by Producers or other Consumers.

2.1.7 asks for decoupling. This is fundamental to GMA.

2.1.8 asks for properties of a broker. R-GMA provides this. It is not clear how this
requirement differs from 2.1.7.

2.1.9 asks for filtering near the source. The R-GMA producer can specify a predicate
defining just what data are being published there. This is not a filter, as any attempt to
publish data that is not consistent with the predicate is an error. This is more efficient.

2.1.10 asks for merged logs. It is not clear exactly what this means, however the R-GMA
Consumers can merge information. Typically the re-publishers are merging information
from multiple streams which they then re-publish.

2.1.11 asks for synchronous and asynchronous writes. The requirement seems to be
interested in the tradeoff between speed and reliability. The R-GMA StreamProducer
offers the speed – but the data are only held in memory, whereas the DataBaseProducer
and LatestProducer are slower but once data are published, they are safe.

2.1.13 asks for deletion of log records. R-GMA does this as explained in the text relating
to the Logger requirement 2.1.2.

Deleted: but as the term is wrong,
now is a good time to get it right

Deleted: with a
LogStreamConnection

Deleted: Connection.

Deleted: seems to correspond to a
record type

Deleted: ¶

2.1.15 asks for specialized LogStreams. R-GMA offers different types of Producer. R-
GMA used to offer a CircularBufferProducer but this was withdrawn, as it is hard to
reason about what data exists with such a data structure. Globally ordered logs are no
problem. All R-GMA records carry a timestamp. This is computed automatically if not
specified, but the user may specify his own timestamp for high precision measurements.

5. Discussion
The main problem relating the OGSA Logger to GMA and R-GMA is the R in R-GMA. It
assumes that a LogStream is logically a set of tuples. The mediator inside R-GMA relies
upon the simplicity of the relational model to be able to reason about which set of
producers to contact to answer a query. The OGSA Logger document assumes Xpath
filters for reading and writing to a log stream. The R-GMA team are very aware of the
need to be able to cope with XML data. XML implementations of GMA (X-GMA) that
parallel R-GMA, by using XML databases instead of RDBMS and Xpath/XQuery instead
of SQL are indeed desirable. In the absence of such implementations today, R-GMA
offers a good starting point for building the functionality of a Logging System on top of
GMA. One way would be to restrict the XML such that a relational mapping is feasible.
Another approach would be to pick out the time stamp and maybe a few more fields (any
which occur exactly once, and store the rest as an XML string). This would probably give
the worst of both worlds

At this stage a question remains: what changes would be required to the OGSA Logger
description to make it conform to (R-)GMA?

This short note has just addressed the Logger System, however it can be seen that
basic services derived from our Information and Monitoring services (and GMA) can
have a big impact upon OGSA, if other services make use of those basic information
and monitoring services.

Deleted: One way would be to
restrict the XML such that a relational
mapping is feasible. Another
approach would be to pick out the
time stamp and maybe a few more
fields (any which occur exactly once,
and store the rest as an XML string).
This would probably give the worst of
both worlds.

