
Clara Gaspar, February 2004

SMI++

The Finite State Machine toolkit
of the JCOP Framework

2Clara Gaspar, February 2004

Outline
❚ SMI++

❙ What is SMI++
❙ Methodology
❙ Tools

❚ Framework <-> SMI++ Integration
❙ Device Units
❙ Control Units

❚ PVSS <-> SMI++ Integration
❙ Technical implementation

3Clara Gaspar, February 2004

SMI++ History
❚ First implemented for DELPHI

❙ by CERN DD/OC group
❙ in ADA

❚ DELPHI used it for the control and
automation of the complete experiment
❙ SMI++ was then rewritten in C++

❘ by B. Franek (and C. Gaspar)

❚ Being used by BaBar for the Run-Control
and high level automation

4Clara Gaspar, February 2004

Control System Architecture

...

To Devices (HW or SW)

Co
m

m
an

ds
St

at
us

 &
 A

la
rm

s

ECS

DCS DAQ

DetDcs1 DetDcsN

SubSys1 SubSys2

Dev1 Dev2 Dev3

DetDaq1

SubSysN

DevN

LHCT.S.

...GAS

DSS

A
bs

tr
ac

t
le

ve
ls

5Clara Gaspar, February 2004

SMI++
❚ Method

❙ Objects and Classes
❘ Allow the decomposition of a complex system into

smaller manageable entities

❙ Finite State Machines
❘ Allow the modeling of the behavior of each entity

and of the interaction between entities

❙ Expert System like rules
❘ Allow Automation and Error Recovery

6Clara Gaspar, February 2004

SMI++

❚ Method (Cont.)
❙ SMI++ Objects can be:

❘ Abstract (e.g. a Run or the DCS)
❘ Concrete (e.g. a CAEN power supply or a tape)

❙ Concrete objects interact with devices
through associated processes - “proxies”

❙ Logically related objects can be grouped
inside “SMI Domains”

7Clara Gaspar, February 2004

SMI++ Run-time Environment

ProxyProxyProxy

Hardware Devices

Obj

Obj

Obj

SMI Domain

ObjObjObj

Obj

Obj SMI Domain

❙ Device Level: Proxies
❘ C, C++, PVSS ctrl scripts
❘ drive the hardware:

〡deduceState
〡handleCommands

❙ Abstract Levels: Domains
❘ Internal objects
❘ Dedicated language
❘ Implement the logical model

❙ User Interfaces
❘ For User Interaction

8Clara Gaspar, February 2004

SMI++
❚ SMI++ - The Language

❙ SML –State Management Language
❘ Finite State Logic

〡Objects are described as FSMs
their main attribute is a STATE

❘ Parallelism
〡Actions can be sent in parallel to several objects.

Tests on the state of objects can block if the objects are
still “transiting”

❘ Asynchronous
〡Actions can be triggered by logical conditions on the state

of other objects

9Clara Gaspar, February 2004

SML – The Language
❚ An SML file corresponds to an SMI
Domain. This file describes:
❙ The objects contained in the domain
❙ For Abstract objects:

❘ The states & actions of each
❘ The detailed description of the logic behaviour of

the object
❙ For Concrete or External (Associated)

objects
❘ The declaration of states & actions

10Clara Gaspar, February 2004

SML – example
class: HV
 state: NOT_READY /initial_state
 when (CAEN1 in_state ON) move_to READY
 action: GOTO_READY
 do SWITCH_ON CAEN1
 if (CAEN1 in_state ON) then
 move_to READY
 endif
 move_to ERROR
 state: READY
 when (CAEN1 in_state TRIP) do RECOVER
 action: RECOVER
 do RESET CAEN
 do SWITCH_ON CAEN
 …
 action: GOTO_NOT_READY
 …
 state: ERROR
 …
 state: TRIP
 …

object: MUON_HV is_of_class HV

class: CAEN /associated
 state: UNKNOWN /dead_state
 state: OFF
 action : SWITCH_ON
 state: ON
 action : SWITCH_OFF
 state: TRIP
 action : RESET
 …

object: CAEN1 is_of_class CAEN

11Clara Gaspar, February 2004

SMI++ Declarations
❚ Classes, Objects and ObjectSets
❚ class: <class_name> [/associated]

❙ <parameter_declaration>
❙ <state_declaration>

❘ <when_list>
❘ <action_declaration>

〡<instruction_list>
❙ …

❚ object: <object_name> is_of_class <class_name>
❚ objectset: <set_name> [{obj1, obj2, …, objn}]

12Clara Gaspar, February 2004

SMI++ Parameters
❚ <parameters>

❙ SMI Objects can have parameters, ex:
❘ int n_events, string error_type

❙ Possible types:
❘ int, float, string

❙ For concrete objects
❘ Parameters are set by the proxy

(they are passed to the SMI domain with the state)
❙ Parameters are a convenient way to pass extra

information up in the hierarchy

13Clara Gaspar, February 2004

SMI++ States
❚ state: <state_name> [/<qualifier>]

❙ <qualifier>
❘ /initial_state

For abstract objects only, the state the object
takes when it first starts up

❘ /dead_state
For associated objects only, the state the object
takes when the proxy or the external domain is not
running

14Clara Gaspar, February 2004

SMI++ Whens
❚ <when_list>

❙ Set of conditions that will trigger an object
transition. "when"s are executed in the order
they are declared (if one fires, the others
will not be executed).

❙ state: <state>
❘ when (<condition>) do <action>
❘ when (<condition>) move_to <state>

15Clara Gaspar, February 2004

SMI++ Conditions
❚ <condition>

❙ Evaluate the states of objects or objectsets

❘ (<object> [not_]in_state <state>)
❘ (<object> [not_]in_state {<state1>, <state2>, …})

❘ (all_in <set> [not_]in_state <state>)
❘ (all_in <set> [not_]in_state {<state1>, <state2>, …})
❘ (any_in <set> [not_]in_state <state>)
❘ (any_in <set> [not_]in_state {<state1>, <state2>, …})

❘ (<condition> and|or <condition>)

16Clara Gaspar, February 2004

SMI++ Actions
❚ action: <action_name> [(parameters)]

❙ If an object receives an undeclared action (in
the current state) the action is ignored.

❙ Actions can accept parameters, ex:
❘ action: START_RUN (string run_type, int run_nr)

❙ Parameter types:
❘ int, float and string

❙ If the object is a concrete object
❘ The parameters are sent to the proxy with the

action
❙ Action Parameters are a convenient way to

send extra information down the hierarchy

17Clara Gaspar, February 2004

SMI++ Instructions
❚ <instructions>

❙ <do>
❙ <if>
❙ <move_to>
❙ <set_instructions>

❘ insert <object> in <set>
❘ remove <object> from <set>

❙ <parameter_instructions>
❘ set <parameter> = <constant>
❘ set <parameter> = <object>.<parameter>
❘ set <parameter> = <action_parameter>

18Clara Gaspar, February 2004

SMI++ Instructions
❚ <do> Instruction

❙ Sends a command to an object.
❙ Do is non-blocking, several consecutive "do"s

will proceed in parallel.
❘ do <action> [(<parameters>)] <object>
❘ do <action> [(<parameters>)] all_in <set>
❘ examples:

〡do START_RUN (run_type = "PHYSICS", run_nr = 123) X

〡action: START (string type)
❘ do START_RUN (run_type = type) EVT_BUILDER

19Clara Gaspar, February 2004

SMI++ Instructions
❚ <if> Instruction

❙ "if"s can be blocking if the objects involved
in the condition are "transiting". The
condition will be evaluated when all objects
reach a stable state.
❘ if <condition> then

〡<instructions>
❘ else

〡<instructions>
❘ endif

20Clara Gaspar, February 2004

SMI++ Instructions
❚ <move_to> Instruction

❙ "move_to" terminates an action or a when
statement. It sends the object directly to
the specified state.
❘ action: <action>

〡…
〡move_to <state>

❘ when (<condition>) move_to <state>

21Clara Gaspar, February 2004

Addressing Objects
❚ Objects in different domains can be
addressed by: <domain>::<object>

object: DET_CONTROL
 state: TEST_MODE
 when (LHC::STATE in_state PHYSICS) do PHYSICS
 action: PHYSICS
 do GOTO_READY MUON::MUON_HV
 …
 state: PHYSICS_MODE
 …

object: LHC::STATE /associated
 state: UNKNOWN /dead_state
 state: PHYSICS
 state: SETUP
 state: OFF
 …

22Clara Gaspar, February 2004

Handling Many Devices
❚ Object Sets

SubSys

Dev1 Dev2 Devn…

Where n = hundreds

class: DEV /associated
 …
object: Dev1 is_of_class DEV
…
objectset: DEVICES {Dev1,Dev2,…}

object: SubSys
 state: READY
 when (any_in DEVICES in_state ERROR) move_to ERROR
 action: START
 do START all_in DEVICES
 move_to RUNNING
 action: DISABLE_DEV(string device)
 remove &VAL_OF_device from DEVICES
 state: RUNNING
 …

23Clara Gaspar, February 2004

SMI++ tools
❚ Tools for generating the run-time system

❙ smiPreproc (only on Linux for the moment)

❘ Preprocessor: include, macros, etc.
❙ smiTrans file.sml file.sobj

❘ Parser and metafile generator

❚ Tools for running the system
❙ smiSM domain_name file.sobj

❘ SMI Engine/Scheduler
❙ smiGUI domain_name (only on Linux for the moment)

❙ smirtl and smiuirtl libraries

24Clara Gaspar, February 2004

SMI++ Preprocessor
❚ File Include

❙ #include "filename"
❚ Macros (recursive replacement)

❘ .macro find_state(obj)
〡if (${obj} in_state ON) then

❘ move_to ON
〡…

❘ .endmacro
❙ Inside an action:

❘ find_state(ObjA)
❘ .repeat find_state(ObjA, ObjB, ObjC)

25Clara Gaspar, February 2004

SMI++ Libraries
❚ Smirtl

❙ Available in C, and C++
❙ To be used by Proxies

❘ smiSetState
❘ smiHandleCommand

❚ Smiuirtl
❙ Also C and C++
❙ To be used by clients (User interfaces)

❘ handleStateChange
❘ sendCommand

26Clara Gaspar, February 2004

Framework Naming

...

To Devices (HW or SW)

Co
m

m
an

ds
St

at
us

 &
 A

la
rm

s

ECS

DCS DAQ

DetDcs1 DetDcsN

SubSys1 SubSys2

Dev1 Dev2 Dev3

DetDaq1

SubSysN

DevN

LHCT.S.

...GAS

DSS

A
bs

tr
ac

t
le

ve
ls

Sys

Dev

Control Unit
Device Unit

27Clara Gaspar, February 2004

Framework Definitions
❚ Hardware Device

❙ a HV channel or an analog input organized by
hardware type (CAEN, ELMB, etc.)

❚ Logical Device
❙ a HV channel or an analog input organized by

logical function (sub-detector, endcap, etc.)
❚ Device Unit

❙ Implements the behaviour of a device or a
group of devices, hardware (ex. CAEN
create) or logical (ex. endcap temperature)

28Clara Gaspar, February 2004

Framework Definitions
❚ Control Unit

❙ Implements the behaviour of a SubSystem
and its children (Device Units or other
Control Units)

❙ Implements the partitioning rules, i.e. knows
how to include, exclude, etc. its children
❘ Include/Exclude/Manual/Ignored

❙ Implements Error Handling, i.e. can recover
from errors coming from its children

29Clara Gaspar, February 2004

FW <-> SMI++ Naming
❚ Device Unit <-> Proxy

❙ Implements actions on the HW
❙ Retrieves a state from the HW
❙ A Device Unit is a PVSS Datapoint

❘ For example of type:
〡fwAI -> if the DU corresponds to one analog input
〡fwCaenBoard -> if the DU corresponds to a CAEN board

with its channels
〡fwNode -> if the DU corresponds to a logical node

containing several devices (possibly of different types)
〡Any other DP type the user wants

30Clara Gaspar, February 2004

DU Type Editor

31Clara Gaspar, February 2004

FW <-> SMI++ Naming
❚ Control Unit <-> SMI Domain

❙ Containing:
❘ One top-level Object (same name as CU)

〡Implementing the overall CU behaviour
❘ keeps the overall state of the CU
❘ Receives actions for this CU

❘ Partitioning Objects (same for each CU)
〡Implementing the partitioning rules

❘ Any other user defined Abstract Objects
❘ Associated Objects for each of the children

〡DUs or other CUs
❘ Children Objects in Sets for exclude/include

32Clara Gaspar, February 2004

Control Unit SMI Domain
❙ Device Units are

not partitionable
(can not work in

stand alone)
-> No Mode Obj

❙ But they can be
Disabled/Enabled

Control Unit

CU
Mode

CU
Top

DUDUDU

Child
Mode

CU
Child

Child
Mode

CU
Child

Obj

33Clara Gaspar, February 2004

Object Type Editor
Translated into SML code

34Clara Gaspar, February 2004

Hierarchy Building
❚ Hierarchy of CUs

❙ "&" means reference
to a CU in another
system

35Clara Gaspar, February 2004

Control Unit

CU
Mode

CU
Top

Hierarchy Building

Obj

Child
Mode

CU
ChildDUCU

Child

Child
Mode

❚ Create Root Node
❚ Add New Object

❙ Not CU flag
❚ Add New Object

❙ CU flag
❚ Add Device

❙ Not CU flag
❚ Add Device

❙ CU flag

36Clara Gaspar, February 2004

Control Unit

CU
Mode

CU
Top

Hierarchy Building

Child
Mode

CU
Child

❚ Create Root Node
❚ Add Object from

FSM View
❙ CU flag

❚ Add Object from
FSM View
❙ Not CU flag

❚ Add Device from
FSM View
❙ Not CU flag

CU
Child

CU
Child

37Clara Gaspar, February 2004

PVSS Integration

CtrlCtrl

APIAPIEVEV

DD DDDD

UIMUIM UIMUIM UIMUIM

DMDMDBDB
PVSS00smi

fwFsmSrvr

38Clara Gaspar, February 2004

PVSS fwFsmSrvr
❚ fwFsmSrvr ctrl script handles:

(one per PVSS System in the main node)
❙ File Generation & Deletion

❘ DU/Object Type
〡fsm files and DU ctrl scripts

❘ Hierarchy Nodes
〡.sml files -> smiTrans -> .sobj files

❙ Starting and Stopping smiSM Processes and
PVSS00smi

❙ Starting and Stopping DU ctrl scripts
❘ a separate ctrl manager runs a thread per DU.

〡DU Handler

39Clara Gaspar, February 2004

PVSS Integration

CtrlCtrl

APIAPIEVEV

DDDD

CtrlCtrl
UIMUIM

DMDMDBDB
PVSS00smi

fwFsmSrvr

Device States
Device Commands

Obj States
Obj Commands

DU Handler

Uses Smirtl

Uses Smiuirtl

40Clara Gaspar, February 2004

APIAPIEVEV

DDDistDist

UIMUIM UIMUIM

DMDMDBDB
PVSS00smi

CtrlCtrl

APIAPIEVEV

DDDD

UIMUIM

DMDMDBDB
PVSS00smi

DU Handler

DistDist

Machine 1

Machine 2

41Clara Gaspar, February 2004

APIAPIEVEV

DDDistDist

UIMUIM UIMUIM

DMDMDBDB
PVSS00smi

CtrlCtrl

APIAPIEVEV

DDDD

UIMUIM

DMDMDBDB
PVSS00smi

DU Handler

DistDist

Machine 1

Machine 2

42Clara Gaspar, February 2004

FwFSM Libraries
❚ fwDU

❙ Library to be used inside DU ctrl scripts
❘ setTimeout(int time, string newState)
❘ setObjectParameters
❘ getActionParameters
❘ getDeviceAlarmLimits

❚ fwCU
❙ Library for PVSS clients (user interfaces)

❘ getObjectStates /connectObjectStates
❘ sendCommands
❘ Take/Return CU Tree

43Clara Gaspar, February 2004

Some Notes on SMI Usage
❚ Task Separation:

❙ SMI Proxies/PVSS Scripts execute only
basic actions – No intelligence

❙ SMI Objects implement the logic behaviour
❙ Advantages:

❘ Change the HW
-> change only PVSS

❘ Change logic behaviour
sequencing and dependency of actions, etc
-> change only SML code

44Clara Gaspar, February 2004

Some Notes on SMI Usage
❚ Error Recovery Mechanism

❙ Bottom Up
❘ SMI Objects wait for command answers

〡Proxies/DUs should implement timeouts

❙ Distributed
❘ Each Sub-System recovers its errors

〡Each team knows how to recover local errors

❙ Hierarchical/Parallel recovery
❙ Can provide complete automation

-> no need for an expert System

45Clara Gaspar, February 2004

Some Notes on SMI Usage
❚ Device Grouping/Granularity:

❙ Shall a DU be a single HV channel?
❘ More intuitive and much easier to implement
❘ Or shall a DU represent a group of HV channels?

〡Group channels to find a state in PVSS scripts
❘ Almost a repetition of SML code logic

❙ Current measurements:
❘ 500 DUs in one CU
❘ send command to all -> all change state -> CU changes state
❘ took 5 seconds (but only 256 MB PC)

❙ Recommendation is yes
❘ But up to around 500/1000 DUs per CU

46Clara Gaspar, February 2004

Future Developments
❚ SML Language

❙ Parameter Arithmetics
❘ set <parameter> = <parameter> + 2
❘ if (<parameter> == 5)

❙ wait(<obj_list)
❙ for instruction

❘ for (dev in DEVICES)
〡if (dev in_state ERROR) then

❘ do RESET dev
〡endif

❘ endfor

47Clara Gaspar, February 2004

Future Developments
❚ SMI++ tools

❙ Preprocessor on windows
❙ Optimize performance

❚ FwFSM Toolkit
❙ Make it easier for users to change SML code
❙ Improve robustness and diagnosis
❙ etc.

