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SMI++

The Finite State Machine toolkit 
of the JCOP Framework
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Outline
❚ SMI++

❙ What is SMI++
❙ Methodology
❙ Tools

❚ Framework <-> SMI++ Integration
❙ Device Units
❙ Control Units

❚ PVSS <-> SMI++ Integration
❙ Technical implementation
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SMI++ History
❚ First implemented for DELPHI

❙ by CERN DD/OC group
❙ in ADA

❚ DELPHI used it for the control and 
automation of the complete experiment
❙ SMI++ was then rewritten in C++

❘ by B. Franek (and C. Gaspar)

❚ Being used by BaBar for the Run-Control 
and high level automation  
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SMI++
❚ Method

❙ Objects and Classes
❘ Allow the decomposition of a complex system into 

smaller manageable entities

❙ Finite State Machines
❘ Allow the modeling of the behavior of each entity 

and of the interaction between entities 

❙ Expert System like rules
❘ Allow Automation and Error Recovery



6Clara Gaspar, February 2004

SMI++

❚ Method (Cont.)
❙ SMI++ Objects can be:

❘ Abstract (e.g. a Run or the DCS)
❘ Concrete (e.g. a CAEN power supply or a tape)

❙ Concrete objects interact with devices 
through associated processes - “proxies”

❙ Logically related objects can be grouped 
inside “SMI Domains”
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SMI++ Run-time Environment

ProxyProxyProxy

Hardware Devices

Obj

Obj

Obj

SMI Domain

ObjObjObj

Obj
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❙ Device Level: Proxies
❘ C, C++, PVSS ctrl scripts
❘ drive the hardware:

〡deduceState
〡handleCommands

❙ Abstract Levels: Domains
❘ Internal objects
❘ Dedicated language
❘ Implement the logical model

❙ User Interfaces
❘ For User Interaction
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SMI++
❚ SMI++ - The Language

❙ SML –State Management Language
❘ Finite State Logic

〡Objects are described as FSMs
their main attribute is a STATE

❘ Parallelism
〡Actions can be sent in parallel to several objects. 

Tests on the state of objects can block if the objects are 
still “transiting”

❘ Asynchronous
〡Actions can be triggered by logical conditions on the state 

of other objects
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SML – The Language
❚ An SML file corresponds to an SMI 
Domain. This file describes:
❙ The objects contained in the domain
❙ For Abstract objects:

❘ The states & actions of each
❘ The detailed description of the logic behaviour of 

the object
❙ For Concrete or External (Associated) 

objects
❘ The declaration of states & actions
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SML – example
class: HV 
 state: NOT_READY /initial_state 
  when (CAEN1 in_state ON) move_to READY 
  action: GOTO_READY 
   do SWITCH_ON CAEN1 
   if (CAEN1 in_state ON) then 
    move_to READY 
   endif 
   move_to ERROR   
 state: READY 
  when (CAEN1 in_state TRIP) do RECOVER 
  action: RECOVER 
   do RESET CAEN 
   do SWITCH_ON CAEN 
   … 
  action: GOTO_NOT_READY 
  … 
 state: ERROR 
  … 
 state: TRIP 
   … 
 
object: MUON_HV is_of_class HV 

class: CAEN /associated
 state: UNKNOWN /dead_state 
 state: OFF 
  action : SWITCH_ON 
 state: ON 
  action : SWITCH_OFF 
 state: TRIP 
  action : RESET 
  … 
 
object: CAEN1 is_of_class CAEN 
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SMI++ Declarations
❚ Classes, Objects and ObjectSets
❚ class: <class_name> [/associated]

❙ <parameter_declaration>
❙ <state_declaration>

❘ <when_list>
❘ <action_declaration>

〡<instruction_list>
❙ …

❚ object: <object_name> is_of_class <class_name>
❚ objectset: <set_name> [{obj1, obj2, …, objn}]
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SMI++ Parameters
❚ <parameters>

❙ SMI Objects can have parameters, ex:
❘ int n_events, string error_type

❙ Possible types:
❘ int, float, string

❙ For concrete objects
❘ Parameters are set by the proxy 

(they are passed to the SMI domain with the state)
❙ Parameters are a convenient way to pass extra 

information up in the hierarchy
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SMI++ States
❚ state: <state_name> [/<qualifier>]

❙ <qualifier>
❘ /initial_state

For abstract objects only, the state the object 
takes when it first starts up

❘ /dead_state
For associated objects only, the state the object 
takes when the proxy or the external domain is not 
running 
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SMI++ Whens
❚ <when_list>

❙ Set of conditions that will trigger an object 
transition. "when"s are executed in the order 
they are declared (if one fires, the others 
will not be executed).

❙ state: <state>
❘ when (<condition>) do <action>
❘ when (<condition>) move_to <state>
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SMI++ Conditions
❚ <condition>

❙ Evaluate the states of objects or objectsets

❘ (<object> [not_]in_state <state>)
❘ (<object> [not_]in_state {<state1>, <state2>, …})

❘ (all_in <set> [not_]in_state <state>)
❘ (all_in <set> [not_]in_state {<state1>, <state2>, …})
❘ (any_in <set> [not_]in_state <state>)
❘ (any_in <set> [not_]in_state {<state1>, <state2>, …})

❘ (<condition> and|or <condition>)
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SMI++ Actions
❚ action: <action_name> [(parameters)]

❙ If an object receives an undeclared action (in 
the current state) the action is ignored.

❙ Actions can accept parameters, ex:
❘ action: START_RUN (string run_type, int run_nr)

❙ Parameter types:
❘ int, float and string

❙ If the object is a concrete object
❘ The parameters are sent to the proxy with the 

action
❙ Action Parameters are a convenient way to 

send extra information down the hierarchy  
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SMI++ Instructions
❚ <instructions>

❙ <do>
❙ <if>
❙ <move_to>
❙ <set_instructions>

❘ insert <object> in <set>
❘ remove <object> from <set>

❙ <parameter_instructions>
❘ set <parameter> = <constant>
❘ set <parameter> = <object>.<parameter>
❘ set <parameter> = <action_parameter>
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SMI++ Instructions
❚ <do> Instruction

❙ Sends a command to an object. 
❙ Do is non-blocking, several consecutive "do"s

will proceed in parallel.
❘ do <action> [(<parameters>)] <object>
❘ do <action> [(<parameters>)] all_in <set>
❘ examples:

〡do START_RUN (run_type = "PHYSICS", run_nr = 123) X

〡action: START (string type)
❘ do START_RUN (run_type = type) EVT_BUILDER
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SMI++ Instructions
❚ <if> Instruction

❙ "if"s can be blocking if the objects involved 
in the condition are "transiting". The 
condition will be evaluated when all objects 
reach a stable state.
❘ if <condition> then

〡<instructions>
❘ else

〡<instructions>
❘ endif
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SMI++ Instructions
❚ <move_to> Instruction

❙ "move_to" terminates an action or a when 
statement. It sends the object directly to 
the specified state. 
❘ action: <action>

〡…
〡move_to <state>

❘ when (<condition>) move_to <state>
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Addressing Objects
❚ Objects in different domains can be 
addressed by: <domain>::<object>

object: DET_CONTROL
 state: TEST_MODE 
  when (LHC::STATE in_state PHYSICS) do PHYSICS 
  action: PHYSICS 
   do GOTO_READY MUON::MUON_HV 
   …   
 state: PHYSICS_MODE 
  … 

object: LHC::STATE /associated
 state: UNKNOWN /dead_state 
 state: PHYSICS 
 state: SETUP 
 state: OFF 
  … 
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Handling Many Devices
❚ Object Sets

SubSys

Dev1 Dev2 Devn…

Where n = hundreds

class: DEV /associated 
 … 
object: Dev1 is_of_class DEV 
… 
objectset: DEVICES {Dev1,Dev2,…} 
 
object: SubSys 
 state: READY 
  when ( any_in DEVICES in_state ERROR) move_to ERROR 
  action: START 
   do START all_in DEVICES 
   move_to RUNNING 
     action: DISABLE_DEV(string device) 
   remove &VAL_OF_device from DEVICES 
 state: RUNNING 
 … 
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SMI++ tools
❚ Tools for generating the run-time system

❙ smiPreproc (only on Linux for the moment)

❘ Preprocessor: include, macros, etc.
❙ smiTrans file.sml file.sobj

❘ Parser and metafile generator

❚ Tools for running the system
❙ smiSM domain_name file.sobj

❘ SMI Engine/Scheduler
❙ smiGUI domain_name (only on Linux for the moment)

❙ smirtl and smiuirtl libraries
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SMI++ Preprocessor
❚ File Include

❙ #include "filename"
❚ Macros (recursive replacement)

❘ .macro find_state(obj)
〡if (${obj} in_state ON) then

❘ move_to ON
〡…

❘ .endmacro
❙ Inside an action:

❘ find_state(ObjA)
❘ .repeat find_state(ObjA, ObjB, ObjC)
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SMI++ Libraries
❚ Smirtl

❙ Available in C, and C++
❙ To be used by Proxies

❘ smiSetState
❘ smiHandleCommand

❚ Smiuirtl
❙ Also C and C++
❙ To be used by clients (User interfaces)

❘ handleStateChange
❘ sendCommand
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Framework Naming
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Framework Definitions
❚ Hardware Device

❙ a HV channel or an analog input organized by 
hardware type (CAEN, ELMB, etc.)

❚ Logical Device 
❙ a HV channel or an analog input organized by 

logical function (sub-detector, endcap, etc.)
❚ Device Unit

❙ Implements the behaviour of a device or a 
group of devices, hardware (ex. CAEN 
create) or logical (ex. endcap temperature)
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Framework Definitions
❚ Control Unit

❙ Implements the behaviour of a SubSystem
and its children (Device Units or other 
Control Units)

❙ Implements the partitioning rules, i.e. knows 
how to include, exclude, etc. its children
❘ Include/Exclude/Manual/Ignored

❙ Implements Error Handling, i.e. can recover 
from errors coming from its children
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FW <-> SMI++ Naming
❚ Device Unit <-> Proxy

❙ Implements actions on the HW
❙ Retrieves a state from the HW
❙ A Device Unit is a PVSS Datapoint

❘ For example of type:
〡fwAI -> if the DU corresponds to one analog input
〡fwCaenBoard -> if the DU corresponds to a CAEN board 

with its channels
〡fwNode -> if the DU corresponds to a logical node 

containing several devices (possibly of different types)
〡Any other DP type the user wants
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DU Type Editor 
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FW <-> SMI++ Naming
❚ Control Unit <-> SMI Domain

❙ Containing:
❘ One top-level Object (same name as CU)

〡Implementing the overall CU behaviour
❘ keeps the overall state of the CU
❘ Receives actions for this CU

❘ Partitioning Objects (same for each CU)
〡Implementing the partitioning rules

❘ Any other user defined Abstract Objects
❘ Associated Objects for each of the children

〡DUs or other CUs
❘ Children Objects in Sets for exclude/include
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Control Unit SMI Domain
❙ Device Units are 

not partitionable
(can not work in 

stand alone) 
-> No Mode Obj

❙ But they can be
Disabled/Enabled 

Control Unit

CU
Mode

CU
Top
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Child
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CU
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Object Type Editor
Translated into SML code
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Hierarchy Building
❚ Hierarchy of CUs

❙ "&" means reference 
to a CU in another 
system
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Control Unit

CU
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Top

Hierarchy Building

Obj

Child
Mode

CU
ChildDUCU

Child

Child
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❚ Create Root Node
❚ Add New Object

❙ Not CU flag
❚ Add New Object

❙ CU flag
❚ Add Device

❙ Not CU flag
❚ Add Device

❙ CU flag
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Control Unit

CU
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❚ Create Root Node
❚ Add Object from 

FSM View
❙ CU flag

❚ Add Object from 
FSM View
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FSM View
❙ Not CU flag
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PVSS Integration
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PVSS fwFsmSrvr
❚ fwFsmSrvr ctrl script handles:

(one per PVSS System in the main node)
❙ File Generation & Deletion

❘ DU/Object Type
〡fsm files and DU ctrl scripts

❘ Hierarchy Nodes
〡.sml files -> smiTrans -> .sobj files

❙ Starting and Stopping smiSM Processes and 
PVSS00smi

❙ Starting and Stopping DU ctrl scripts
❘ a separate ctrl manager runs a thread per DU.

〡DU Handler
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PVSS Integration
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FwFSM Libraries
❚ fwDU

❙ Library to be used inside DU ctrl scripts
❘ setTimeout(int time, string newState)
❘ setObjectParameters
❘ getActionParameters
❘ getDeviceAlarmLimits

❚ fwCU
❙ Library for PVSS clients (user interfaces)

❘ getObjectStates /connectObjectStates
❘ sendCommands
❘ Take/Return CU Tree
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Some Notes on SMI Usage
❚ Task Separation:

❙ SMI Proxies/PVSS Scripts execute only 
basic actions – No intelligence

❙ SMI Objects implement the logic behaviour
❙ Advantages:

❘ Change the HW 
-> change only PVSS

❘ Change logic behaviour
sequencing and dependency of actions, etc 
-> change only SML code
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Some Notes on SMI Usage
❚ Error Recovery Mechanism

❙ Bottom Up
❘ SMI Objects wait for command answers

〡Proxies/DUs should implement timeouts

❙ Distributed
❘ Each Sub-System recovers its errors

〡Each team knows how to recover local errors

❙ Hierarchical/Parallel recovery
❙ Can provide complete automation                      

-> no need for an expert System
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Some Notes on SMI Usage
❚ Device Grouping/Granularity:

❙ Shall a DU be a single HV channel?
❘ More intuitive and much easier to implement
❘ Or shall a DU represent a group of HV channels?

〡Group channels to find a state in PVSS scripts
❘ Almost a repetition of SML code logic

❙ Current measurements:
❘ 500 DUs in one CU
❘ send command to all -> all change state -> CU changes state
❘ took 5 seconds (but only 256 MB PC)

❙ Recommendation is yes 
❘ But up to around 500/1000 DUs per CU



46Clara Gaspar, February 2004

Future Developments
❚ SML Language

❙ Parameter Arithmetics
❘ set <parameter> = <parameter> + 2
❘ if (<parameter> == 5)

❙ wait(<obj_list)
❙ for instruction

❘ for (dev in DEVICES)
〡if (dev in_state ERROR) then

❘ do RESET dev
〡endif

❘ endfor
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Future Developments
❚ SMI++ tools

❙ Preprocessor on windows
❙ Optimize performance

❚ FwFSM Toolkit
❙ Make it easier for users to change SML code
❙ Improve robustness and diagnosis
❙ etc.


