iy

SMI++

The Finite State Machine toolkit
of the JCOP Framework

Clara Gaspar, February 2004

% Outline

I SMI++
I What is SMI++
I Methodology
I Tools
I Framework <-> SMI++ Integration
I Device Units
I Control Units
I PVSS <-> SMI++ Integration
I Technical implementation

Clara Gaspar, February 2004

%SMIH History

I First implemented for DELPHI
I by CERN DD/OC group
1 in ADA

I DELPHT used it for the control and
automation of the complete experiment

I SMI++ was then rewritten in C++
| by B. Franek (and C. Gaspar)

I Being used by BaBar for the Run-Control
and high level automation

Clara Gaspar, February 2004

%Con’rrol System Architecture

-

Abstract levels

DR @Q

Cors) (oetoest D ... (etdesh > (etbagld -

To Devices (HW or SW)

Clara Gaspar, February 2004

Status & Alarms

Commands

K358 SMI + +

I Method

I Objects and Classes

| Allow the decomposition of a complex system into
smaller manageable entities

I Finite State Machines

| Allow the modeling of the behavior of each entity
and of the interaction between entities

I Expert System like rules
| Allow Automation and Error Recovery

Clara Gaspar, February 2004 5

5358 SMI ++

i Method (Cont.)

I SMI++ Objects can be:
| Abstract (e.g. a Run or the DCS)
| Concrete (e.g. a CAEN power supply or a tape)

I Concrete objects interact with devices
through associated processes - "proxies”

I Logically related objects can be grouped
inside "SMI Domains"”

Clara Gaspar, February 2004

%SMIH Run-time Environment

I Device Level: Proxies
| C, C++, PVSS ctrl scripts
| drive the hardware:
| deduceState
| handleCommands

| Abstract Levels: Domains
| Internal objects
| Dedicated language

Obj)j)] | Implement the logical model

I User Interfaces
Proxy
% | For User Interaction

YVY

Hardware Devices

SMI Domain

(&)

Clara Gaspar, February 2004 7

K358 SMI + +

I SMI++ - The Language

I SML -State Management Language

| Finite State Logic

| Objects are described as FSMs
their main attribute isa STATE

| Parallelism

| Actions can be sent in parallel to several objects.
Tests on the state of objects can block if the objects are
still “transiting”

| Asynchronous

| Actions can be triggered by logical conditions on the state
of other objects

Clara Gaspar, February 2004 8

%SML - The Language

I An SML file corresponds to an SMI
Domain. This file describes:

I The objects contained in the domain

I For Abstract objects:
| The states & actions of each

| The detailed description of the logic behaviour of
the object

I For Concrete or External (Associated)
objects

| The declaration of states & actions

Clara Gaspar, February 2004

%SML - example

class: HV
state: NOT_READY /initial_state
when (CAEN1 in_state ON) move_to READY
action: GOTO_READY
do SWITCH_ON CAEN1
if (CAEN1 in_state ON) then
move_to READY
endif
move_to ERROR
state: READY
when (CAEN1 in_state TRIP) do RECOVER
action: RECOVER
do RESET CAEN
do SWITCH_ON CAEN

ac.t.i.on: GOTO _NOT READY
state: ERROR

state: TRIP

object: MUON_HV is_of class HV

class: CAEN /associated
state: UNKNOWN /dead_state
state: OFF
action : SWITCH_ON
state: ON
action : SWITCH_OFF
state: TRIP
action : RESET

object: CAEN1 is_of_class CAEN

Clara Gaspar, February 2004

10

%SMIH- Declarations

I Classes, Objects and ObjectSets
B class: <class_name> [/associated]
I <parameter_declaration>
I <state_declaration>
| <when_list>
| <action_declaration>
| <instruction_list>
I ..
I object: <object_name> is_of_class <class_name>
I objectset: <set_name> [{obj1, obj2, ..., objn}]

Clara Gaspar, February 2004 17

%SMIH Parameters

i <parameters>
I SMI Objects can have parameters, ex:
| int n_events, string error_type
I Possible types:
| int, float, string

I For concrete objects

| Parameters are set by the proxy
(they are passed to the SMI domain with the state)

I Parameters are a convenient way to pass extra
information up in the hierarchy

Clara Gaspar, February 2004 12

%SMIH- States

I state: <state_name> [/<qualifier>]

I <qualifier>

| /initial_state
For abstract objects only, the state the object
takes when it first starts up

| /dead_state
For associated objects only, the state the object
takes when the proxy or the external domain is not
running

Clara Gaspar, February 2004 13

%SMIH Whens

i <when_list>
I Set of conditions that will trigger an object
transition. "when"s are executed in the order

they are declared (if one fires, the others
will not be executed).

I state: <state>
| when (<condition>) do <action»>
| when (<condition>) move_to <state>

Clara Gaspar, February 2004 14

%SMIH- Conditions

I <condition>
I Evaluate the states of objects or objectsets

| (<object> [nhot_Jin_state <state>)
| (<object> [not_Jin_state {<statel>, <state2>, ..})

(all_in <set> [not_Jin_state <state>)

(all_in <set> [not_Jin_state {<statel>, <state2>, ...})
(any_.in <set> [not_Jin_state <state>)

(any_in <set> [not_Jin_state {<statel>, <state2>, ..})

| (<«condition> and|or <condition>)

Clara Gaspar, February 2004 15

%SMIH- Actions

I action: <action_name> [(parameters)]

I If an object receives an undeclared action (in
the current state) the action is ignored.
I Actions can accept parameters, ex:
| action: START_RUN (string run_type, int run_nr)
I Parameter types:
| int, float and string

| If the object is a concrete object
| The parameters are sent to the proxy with the
action
I Action Parameters are a convenient way to

send extra information down the hierarchy
Clara Gaspar, February 2004 16

%SMIH Instructions

i <instructions>
| <do>
1 <if>
I <move_to>
I <set_instructions>
| insert <object> in <set>
| remove <object> from <set>
I <parameter_instructions>
| set <parameter> = <constant>

| set <parameter> = <object>.<parameter>
| set <parameter> = <action_parameter>

Clara Gaspar, February 2004 17

%SMIH Instructions

i <do> Instruction
I Sends a command to an object.
I Do is non-blocking, several consecutive "do"s
will proceed in parallel.
| do <action> [(<parameters>)] <object>

| do <action> [(<parameters>)] all_in <set>

| examples:
| do START_RUN (run_type = "PHYSICS", run_nr = 123) X

| action: START (string type)
| do START_RUN (run_type = type) EVT_BUILDER

Clara Gaspar, February 2004 18

%SMIH Instructions

i <if> Instruction

I "if"s can be blocking if the objects involved
in the condition are "transiting". The
condition will be evaluated when all objects
reach a stable state.

| if <condition> then
| <instructions>
| else

| <instructions>
| endif

Clara Gaspar, February 2004

19

%SMIH Instructions

I <move_to> Instruction

I "move_to" terminates an action or a when
statement. It sends the object directly to
the specified state.

| action: <action»
| ...
| move_to <state>

| when (<condition>) move_to <state>

Clara Gaspar, February 2004

20

%Addr‘essing Objects

I Objects in different domains can be

addressed by: <domain>::<object>

object: DET_CONTROL
state: TEST_MODE

action: PHYSICS
do GOTO READY MUON::MUON_HV

state: PHYSICS MODE

when (LHC::STATE in_state PHYSICS) do PHYSICS

object: LHC::STATE /associated
state: UNKNOWN /dead_state
state: PHYSICS
state: SETUP
state: OFF

Clara Gaspar, February 2004

21

%Handling Many Devices

I Object Sets

Where n = hundreds

class: DEV /associated
object: Dev1 is_of_class DEV
objectset: DEVICES {Dev1,Dev2,...}

object: SubSys
state: READY
when (any_in DEVICES in_state ERROR) move_to ERROR
action: START
do START all_in DEVICES
move_to RUNNING
action: DISABLE_DEV(string device)
remove &VAL_OF_device from DEVICES
state: RUNNING

Clara Gaspar, February 2004

22

%‘%SMI*% tools

I Tools for generating the run-time system

[smiPr'epr'oc (only on Linux for the moment)
| Preprocessor: include, macros, etc.

I smiTrans file.sml file.sobj
| Parser and metafile generator
I Tools for running the system

I smiSM domain_name file.sobj
| SMI Engine/Scheduler
I smiGUI domain_name (only on Linux for the moment)

I smirtl and smiuirtl libraries
Clara Gaspar, February 2004 23

5% SMI++ Preprocessor

i File Include
I #include "filename"

I Macros (recursive replacement)
| .macro find_state(obj)
| if (${obj} in_state ON) then
| move_to ON
| ...
| .endmacro
I Inside an action:
| find_state(ObjA)
| .repeat find_state(ObjA, ObjB, ObjC)

Clara Gaspar, February 2004

24

%SMIH- Libraries

i Smirtl
I Available in C, and C++

I To be used by Proxies
| smiSetState
| smiHandleCommand

I Smiuirtl
I Also C and C++

I To be used by clients (User interfaces)
| handleStateChange
| sendCommand

Clara Gaspar, February 2004 25

%‘% Framework Naming
p

DR @Q

Cers) Coetoest D ... CemdesN > ((Detbagld -+

N

Abstract levels

D @D G o>

To Devices (HW or SW)

@r) Control Unit

Dev Device Unit

Clara Gaspar, February 2004

Status & Alarms
Commands

26

%‘%Fr‘amework Definitions

I Hardware Device

I a HV channel or an analog input organized by
hardware type (CAEN, ELMB, etc.)
I Logical Device

I a HV channel or an analog input organized by
logical function (sub-detector, endcap, etc.)

i Device Unit

I Implements the behaviour of a device or a
group of devices, hardware (ex. CAEN
create) or logical (ex. endcap temperature)

Clara Gaspar, February 2004 27

%Fr‘amework Definitions

i Control Unit

I Implements the behaviour of a SubSystem
and its children (Device Units or other
Control Units)

I Implements the partitioning rules, i.e. knows
how to include, exclude, etc. its children

| Include/Exclude/Manual/Ignored

I Implements Error Handling, i.e. can recover
from errors coming from its children

Clara Gaspar, February 2004 28

%FW <-> SMI++ Naming

I Device Unit <-> Proxy
I Implements actions on the HW
I Retrieves a state from the HW

I A Device Unit is a PVSS Datapoint

| For example of type:
| fwAI -> if the DU corresponds to one analog input

| fwCaenBoard -> if the DU corresponds to a CAEN board
with its channels

| fwNode -> if the DU corresponds to a logical node
containing several devices (possibly of different types)

| Any other DP type the user wants

Clara Gaspar, February 2004 29

%DU Type Editor

i smi_object_states

Device Type: FwAiMotor

=101 =]

F'anel:l FuAifator. pnl

List:

Simple Config Copy from type:
Object Parameters
State List: Action
RUMMIRG
READY
MOT _READY
ERROR
State: Colar; Action:
RUNNING - STOP
Add Remove | Add

Rermioy

Action Parameters

Configure Device |

Configure Device Initialization

Configure Device Stakes

Configure Device Actions

: Script-Editor

Fil= Edit

Find Toals 7

string domain.
float walus

1f({walus > 1)

d

FwhiMotor_walueChanged|

string device.

[—

string &fwState)

fwState "REUOHHIHG" ;
el=ze 1f({valus= 03
1
fwState "REEADY"
el=ze 1f({valus= -1
1
fwState "HOT_READY"
¥
el=e
1
fwState "ERREOR" ;
¥
I -
1 _'*I_I
“Fuary 2004 30

%FW <-> SMI++ Naming

i Control Unit <-> SMI Domain

I Containing:

| One top-level Object (same hame as CU)

| Implementing the overall CU behaviour
| keeps the overall state of the CU
| Receives actions for this CU

| Partitioning Objects (same for each CU)
| Implementing the partitioning rules

| Any other user defined Abstract Objects

| Associated Objects for each of the children
| DUs or other CUs

| Children Objects in Sets for exclude/include
Clara Gaspar, February 2004 37

%Com‘r‘ol Unit SMI Domain

I Device Units are
not partitionable
(can not work in
stand alone)

-> No Mode Obj

I But they can be
Disabled/Enabled

Clara Gaspar, February 2004

32

Obiject Type Editor

i smi_object_states

=100 x|
Object Type: MotorType paneklhﬂnmrﬁrpe.pnl /IPGHS'C(T@d inTO SML COde

Simple Config Copy fram type:

Ohbject Parameters

=10 =]

State List: Action List;
NOT READY

Aicl CONFIGURE $ALLSFwCHILDREM

CONFIGURE if | ALLFwCHILDREN not in state READY | then
RURNMIMNG move to NOT READY
READY endif - -
ERROR
move to RELDTY

State: ACtion:
MOT READY CONFIGLRE

Add Rernove Add |

Action Par
When List;

when [$ANYSFwWCHILDREM in state ERROR) move

when [BALLFFwCHILDRENM in_state READY) moave_ti

when [BALLFFwWCHILDRENM in_state RUNMIMG) move
1

Add | Fermowe

Ok 8] cancel

%Hier‘ar‘chz Building

Device Editor & Navigator

Funning Dn:l dist 1

Hardwarel Lu:ugin::all DUs/Cls FSh |

-DALC
+0et1 DAL
+0etZ? DAL
-DCs

S:=ublet?
+Sublet
E.mubDets
+5roupTop
+Tophdotars

Create Root Mode | Generate All FSMS'

| dist_2:SubDet2

Tg,fpe:l Mode ¥ CL

I Hierarchy of CUs

1 "&" means reference

to a CU in another
system

pspar, February 2004

34

%Hiemrchz Building

1 Create Root Node
I Add New Object
I Not CU flag

I Add New Object
1 CU flag

I Add Device
I Not CU flag

I Add Device
1 CU flag

Clara Gaspar, February 2004 35

%Hiemrchz Building

i Create Root Node

I Add Object from
FSM View
1 CU flag

I Add Object from
FSM View
I Not CU flag

I Add Device from
FSM View
I Not CU flag

Clara Gaspar, February 2004 36

% PVSS Integration

Clara Gaspar, February 2004 37

%’ﬁ PVSS fwFsmSrvr

I fwFsmSrvr ctrl script handles:
(one per PVSS System in the main node)
| File Generation & Deletion

| DU/Object Type
| fsm files and DU ctrl scripts
| Hierarchy Nodes

| .sml files -> smiTrans -> .sobj files

I Starting and Stopping smiSM Processes and
PVSSOO0smi

I Starting and Stopping DU ctrl scripts

| a separate ctrl manager runs a thread per DU.
| DU Handler

Clara Gaspar, February 2004 38

% PVSS Integration

) Obj States
Obj Commands ,
fwFsmSrvr Uses Smiuirtl
— Q=
PVSS00smi Device States

Device Commands

Uses Smirtl

Clara Gaspar, February 2004

39

ap

VSS00smi

Clara Gaspar, February 2004

Machine 1

Machine 2

40

DR NM o EV Pra= API

PVSS00smi

Machine 1

Citrl

/l Handler

DEEa UMz EV API

PVSS00smi
D
Clara Gaspar, February 2004

Machine 2

41

% FWFSM Libraries

1 fwDU

I Library to be used inside DU ctrl scripts
| setTimeout(int tfime, string newState)
| setObjectParameters
| getActionParameters
| getDeviceAlarmLimits

1 fwCU

I Library for PVSS clients (user interfaces)
| getObjectStates /connectObjectStates

| sendCommands
| Take/Return CU Tree

Clara Gaspar, February 2004

42

%Some Notes on SMI Usage

I Task Separation:

I SMI Proxies/PVSS Scripts execute only
basic actions - No intelligence

I SMI Objects implement the logic behaviour

I Advantages:

| Change the HW
-> change only PVSS

| Change logic behaviour
sequencing and dependency of actions, etc
-> change only SML code

Clara Gaspar, February 2004 43

%Some Notes on SMI Usage

1 Error Recovery Mechanism

I Bottom Up

| SMI Objects wait for command answers
| Proxies/DUs should implement timeouts

I Distributed

| Each Sub-System recovers its errors
| Each team knows how to recover local errors

I Hierarchical/Parallel recovery

I Can provide complete automation
-> no need for an expert System

Clara Gaspar, February 2004 44

%Some Notes on SMI Usage

I Device Grouping/Granularity:
I Shall a DU be a single HV channel?

| More intuitive and much easier to implement

| Or shall a DU represent a group of HV channels?

| Group channels to find a state in PVSS scripts
| Almost a repetition of SML code logic

I Current measurements:
| BO0 DUs in one CU

| send command to all -> all change state -> CU changes state

| took 5 seconds (but only 256 MB PC)

I Recommendation is yes
| But up to around 500/1000 DUs per CU

Clara Gaspar, February 2004 45

%Fufure Developments

I SML Language

I Parameter Arithmetics
| set <parameter> = <parameter> + 2
| if (<parameter> == 5)

I wait(<obj_list)

I for instruction
| for (dev in DEVICES)
| if (dev in_state ERROR) then
| do RESET dev
| endif
| endfor

Clara Gaspar, February 2004

46

%Future Developments

I SMI++ tools

I Preprocessor on windows
I Optimize performance

I FWFSM Toolkit

I Make it easier for users to change SML code
I Improve robustness and diagnosis
| etc.

Clara Gaspar, February 2004 47

