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All presented components have been implemented in the course of the EU project Data-
Grid: The Lemon components, the FT fault-tolerance mechanism, the quattor system for
software installation and configuration, the RMS job and resource management system, and
the Gridification scheme that integrates clusters into the Grid.
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1. Introduction

Large-scale projects like the forthcoming LHC experiments at CERN require
computing resources in a scale that was never reached before [4]. In respect
to their excessive demands on the computing infrastructure these projects
are often equipped with a relatively low budget for computing, storage, and
networking. Commodity clusters made of common-off-the-shelf technology
therefore provide a welcome alternative to the more costly high-performance
computers. The vastly grown requirements on the availability, however, clearly
identify the neuralgic shortcomings in the current state-of-the-art of the clus-
ter technology, namely their poor fault tolerance and high maintenance over-
head [24]. Moreover, clusters are often incrementally installed or upgraded
over time, typically resulting in heterogeneous hardware and software and
thereby making it difficult to manage them in a consistent way.

At a conceptually higher level, clusters are often used as computing nodes
in global Grid environments. Here, the mentioned problems become even
more critical, because single clusters should (ideally) function autonomously
without human intervention. The automated operation is not only necessary
for reducing human administration effort, but also to limit possible sources of
errors and to improve the response time.

First bold visions for autonomic computing systems were presented, but
their implementation are – of course – still in their infancy. Among the four
self-management issues presented by Kephart and Chess [17], our work ad-
dresses self-configuration and self-healing. We aim at freeing virtual organi-
zations from the burden of manually maintaining compute fabrics, thereby
allowing them to concentrate on the higher-level organizational tasks in the
Grid.

Our system facilitates self-configuration by describing the configuration
of hardware and software components and deploying this information, e.g.
for install and configure services. Self-healing features are achieved by mon-
itoring the actual state of hardware and software components, correlating the
sampled data with the goal state and automatically devising actions for repair-
ing or updating the affected components. Additionally, our system manages

∗ This work from the EU DataGrid project was funded by the European Commission grant
IST-2000-25182.
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the access to cluster resources for Grid jobs and it coordinates all tasks, that
is, it provides a coherent inter- and intra-cluster job management.

The remainder of this paper is organized as follows. In the next section we
present an overview of the architecture of the DataGrid fabric management
system. Thereafter we present the building blocks in more detail (Sections 3
through 7) and conclude the paper with a summary of our results.

2. A Brief Outline of the Architecture

We illustrate the requirements on the architecture by the following scenarios.
All scenarios assume a UNIX based fabric comprised of a single cluster and
some management servers.

Job authorization: A user sends a job request to the fabric, including ordi-
nary requirements (e.g. number of processors, input data, expected execution
time, etc.) and a certificate. The entry point of the fabric validates both the
ordinary requirements and the certificate. In particular, it checks whether the
user is banned or permitted to access the fabric’s resources. Before the request
is handed over to the cluster batch system, a local UNIX account is provided
for the request dynamically.

Fault tolerance: Each node provides a set of services. Most daemons may
be both monitored and restarted remotely. However, some daemons cannot
be restarted remotely, e.g. sshd, and require self-healing capabilities inside
the node, because restarting daemons remotely is done via sshd. Hence, mon-
itoring data about service daemons is periodically sampled. Then, the data is
analyzed (i.e. comparing the actual state with the goal state) and repair actions
are devised.

Scheduling of intrusive actions: If a new kernel has to be installed on a
subset of the cluster nodes, this would affect running jobs at these nodes.
Hence, the maintenance action is an intrusive one and must be scheduled at a
time when no user job is executed at these nodes. Therefore the software
installation system asks the resource management system to not schedule
further jobs to these nodes. On each node the action may be scheduled at
a different time.

The architecture reflects two key issues: (1) autonomous maintenance of
the configuration of clusters and (2) job management.

Figure 1 depicts the interrelationships between the components, that we
developed and implemented in the European DataGrid project [8], and shows
how they work together to achieve an automated computing center manage-
ment. A ’fabric’ comprises several separate clusters with (possibly) different
cluster management systems. Three kinds of jobs may enter the fabric:

− grid jobs (from the grid level above),
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Figure 1. Management cycle for the automated maintenance of clusters in a compute center
and their integration into a production Grid.

− local user jobs (injected from the left), and

− maintenance jobs (injected by the system itself).

Status information on the clusters’ target configuration, the goal state, is
stored in a configuration database. The actual state is obtained by monitoring
tools. Both states are compared in the Fault Detection and Recovery System,
which checks for mismatches and initiates the necessary maintenance actions
to fix them. Note that these actions are passed via the Installation System
to the Job Management which schedules the maintenance jobs just like any
other ordinary user job—but with specific requirements, of course. In addi-
tion, local user jobs may be submitted for execution on specified clusters, or
grid jobs may be injected from remote via the Gridification component.

3. Resource Management

For the described scenario, the resource management system must cope with
additional tasks that are not commonly found in today’s cluster management
systems:

− the interaction with different cluster management systems,
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− the support of jobs coming from various sources,

− the provision of additional services for the grid layer.

The Maui scheduler [5] provides scheduling algorithms and static config-
uration features required for our system. Some cluster management systems
already provide hooks to integrate external schedulers like Maui, but the inte-
gration is done differently for each system. Our system, in contrast, interfaces
to various cluster management systems and schedulers via adaptors, without
the need to implement separate adaptation interfaces for each combination.

A variety of cluster configuration suites, like OSCAR [20], SCMS [29],
NPACI Rocks [21] exists, but none of them supports the scheduling of main-
tenance actions.

3.1. RESOURCE MANAGEMENT ARCHITECTURE

In most cluster batch systems, the scheduler interacts with a server/master
to retrieve status information from the nodes to make its scheduling deci-
sions. We illustrate different aspects of this interaction in the following sec-
tions. First, we discuss how a specific scheduler can interact with a specific
server/master. Thereafter we show how to manage several clusters with one
scheduler. With our approach scheduling features can be added to cluster
management systems in a non-intrusive way. We describe this at the hand of
scheduling features that are missing in several cluster management systems.

3.1.1. Consistent Management of Multiple Clusters
We use an abstraction layer (AL) [25] between the scheduler and the cluster
batch system’s server. The AL filters information that is transmitted between
the two components. This reduces the customization efforts in an environment
with different schedulers and multiple cluster batch systems. When the source
code of the server or the scheduler is not available, adding an abstraction layer
may be the only possible solution. In addition, it helps hiding site-specific
facilities or features like internal load balancing across clusters, resource bro-
kerage, status information filtering, etc. The abstraction layer is kept generic
and provides an proxy interface for plugging-in different adapters for differ-
ent servers/schedulers.

The abstraction layer also allows to operate several clusters with a single
scheduler as illustrated in Fig. 2. Here, job management actions are depicted
by solid arrows while maintenance tasks have dashed lines.

Incoming jobs are submitted to the server (step 1). The scheduler period-
ically asks for the current status of nodes and jobs, and the abstraction layer
gathers this information by sending requests to the server. When finished, it
sends the (filtered) information back to the scheduler (step 2). The sched-
uler determines a schedule and sends the decision to the server through the
abstraction layer (step 3).
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Figure 2. Support for job management and maintenance actions across several clusters.

Only four operations are necessary to link scheduler and server by an
abstraction layer: start job, cancel job, node info, and job info. Although the
set of operations seems to be obvious, its composition was motivated by the
Wiki interface of the Maui scheduler.

The execution of maintenance actions is illustrated by dashed arrows in
Fig. 2. First, the abstraction layer receives a request to switch a node on or off
(step A). If it accepts the request, it reserves the specified nodes for the given
time interval (step B) and sets the status of the nodes during that interval to
stopped at the servers (step C).

3.1.2. Extending the Functionality of Cluster Management Systems
Most cluster management systems, like the Portable Batch System (PBS) [14],
LoadLeveler (LL) [15], Sun Grid Engine (SGE) [27], Load Sharing Facility
(LSF) [32], or the Computing Center Software (CCS) [16] provide a com-
mon set of scheduling features like fifo, backfill, etc. They mainly differ in
their support for advanced scheduling capabilities like advance reservation.
While users of stand-alone clusters may be able to cope with these feature
lacks, Grid users are forced to confine themselves to the common set of basic
scheduling features. Our approach, in contrast, allows to add those functions
inside the abstraction layer if necessary.
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Note that up to now no cluster management system or scheduler supports
the modification of node states like on and off, which is necessary to support
the planning and execution of maintenance actions.

3.1.2.1. Maintenance Actions As outlined in Section 1 automating the ad-
ministration of large clusters is an important issue. Administrative tasks that
may affect jobs running on the same node, must be taken into account by the
scheduler by planning the maintenance task just like an ordinary job.

A simple but effective method is to disable all affected nodes during the
task. To schedule a maintenance action, the admin component contacts the
resource management for a specific or flexible time slot on a set of nodes.
The scheduler decides and schedules the node state change. If the request
was successful, the administrative task can be performed during the agreed
time slot.

3.1.2.2. Advance Reservations Our scheme of handling maintenance ac-
tions needs the capability to request time slots in the future for the coor-
dinated planning of system maintenance. Not all cluster schedulers support
advance reservations. Hence we replace them by a more powerful one, the
Maui scheduler.

3.2. CURRENT STATUS

We implemented the described architectural framework in a daemon that pro-
vides generic interfaces to both scheduler and server of a cluster batch system.
Currently, our framework uses the Maui scheduler and supports OpenPBS
and LSF as batch systems.

We performed experiments to determine the overhead of our implemen-
tation. The overhead of the main control methods (i.e. getNodes, getJobs
and startJob) varies between 40 and 120 ms on a 16 node cluster. In [25]
we discuss our implementation and the measurements in more details.

4. Configuration and Installation

Large fabrics consist of diverse hardware and software. Mainly, two rea-
sons contribute to this observation. First, different machines serve differ-
ent purposes, e.g. batch nodes, batch servers, file servers, network manage-
ment machines, etc. Second, even those machines which are used for the
same purpose may be installed or upgraded in an incremental procedure.
Moreover, the list of software to be installed on all those machines differs
significantly. Hence, the administration complexity is enormous. An auto-
mated configuration and installation management system is required to lower
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the administration overhead and facilitate a consistent configuration of all
services.

Here, we briefly describe a system called quattor that addresses these is-
sues. Quattor manages configuration information, installs software packages
and configures the services provided by a fabric. The system is discussed in
more detail in a separate paper in this journal [18].

Cfengine [6] is a set of tools building an expert system for the config-
uration and management of computer networks. Unlike quattor, Cfengine
uses no central store for configuration information. Configuration elements
are implicitly contained in policy rules organized by classes. Cfengine does
not address software distribution. LCFGng [3] stores configuration informa-
tion in a central database. Its configuration description language provides
mechanisms for inheritance and mutation. The information is made available
to specific machines by creating a machine profile and transmitting it to its
target (i.e. the machine). Even though quattor and LCFGng share many archi-
tectural ideas, quattor comes with a new and feature-rich configuration lan-
guage called “pan”, improvements in the software management system, and
more adherence to established standards, e.g. for initial system installation or
service configuration management.

4.1. ARCHITECTURAL OVERVIEW

The key design issues for the architecture are:

− distributed approach: operations are handled locally on the machines
whenever possible,

− efficiency: machine profiles are stored locally to avoid a central bottle-
neck, and

− adaptability: interfaces existing tools.

Figure 3. Components for managing configuration information
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Quattor consists of two building blocks, a configuration information man-
agement system and a software installation and service configuration system.
The former is shown in Figure 3. It consists of a central database that stores
configuration information. The information is inserted or updated using a
High Level Description language (HLD). Machine profiles are generated by
compiling HLD information into Low Level Description documents using
Pan. These machine profiles are stored in the CDB. If a machine’s profile was
changed the Configuration Cache Manager (CCM) on the respecting host is
notified. The CCM of a machine polls for its profile and stores it in a local
cache. The Node Configuration Manager (NCM) provides a framework for
adapting the actual configuration of a node to its desired configuration, as it is
described in the node’s profile. Plug-in software modules called components
are responsible for the configuration of local services, e.g. network, sendmail,
NFS, scheduler, etc. These components or any other service on a machine
may access configuration information via the Node View Access API (NVA).

Figure 4. Components for managing software installation

A specific service using the configuration information management sys-
tem is the software installation system. Figure 4 shows the main compo-
nents of such a system. Software packages are stored in a repository on a
server (multiple servers may coexist). The list of software to be installed
on a machine is stored in a central configuration database and forwarded
to this machine via its configuration cache manager. On each machine the
Software Package Manager Agent compares the target software list with the
currently installed packages and devises a list of packages to be installed or
removed, according to configuration policies e.g. for respecting existing local
installation. The tool rpmt executes this list. For efficiency packages may be
pre-staged to a machine in a cache.
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4.2. CURRENT STATUS

Quattor is successfully used at Cern’s computing center. A detailed discussion
of the results is included in the paper on quattor [18] in this journal.

5. Monitoring

Monitoring data about many different components must be gathered and stored
to facilitate the self-healing of fabric services. First, data must be collected.
Then it must be stored and made available in an efficient manner for other
components, such as the fault detection system (see Section 6). We developed
Lemon a framework for monitoring components and storing the collected data
both in a local and in a central repository.

SNMP (Simple Network Management Protocol) [28] is a widely used
standard for facilitating device management over a network. Agents notify
managers about events, while managers poll agents for data updates. A mon-
itoring system building on SNMP may contain components from different
vendors. However, SNMP was not used, because it is quite complex to im-
plement, the communication between the agents and the manager is not ef-
ficient [2], and its data format is bounded to transfer commands. In contrast,
Lemon uses a proprietary very simple data exchange format.

Ganglia [26] and Condor Hawkeye [13] use XML as data format. Lemon
uses XML for querying and change notification.

In Ganglia, all nodes push all data to all cluster mates, and cluster repre-
sentatives are polled by the manager. In contrast, Lemon stores data locally
and forwards it directly to the manager, which is more efficient in large
clusters.

5.1. ARCHITECTURE OF THE MONITORING SYSTEM

The monitoring system consists of four components as shown in Figure 5.

Figure 5. The monitoring system consisting of sensors, a sensor controller, a local and a
central monitoring data repository.
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On each machine different sensors periodically collect data. All sensors
are controlled by the Monitoring Sensor Agent (MSA) which receives data
samples and stores them in a Local Monitoring Data Repository (i.e. a cache).
The MSAs also forward the data samples to a central repository.

5.1.1. Data sampling
A configurable Monitoring Sensor Agent runs on all monitored hosts. The
MSA is responsible for calling the plug-in sensors to sample the configured
metrics. The system provides sensors for common performance and exception
monitoring. Other sensors can be plugged in easily. The sampling frequency
and the minimal change percentage required for a sample to be sent (smooth-
ing) can be configured per metric. The interface is designed such that sensors
are not required to answer to MSA sampling requests and may chose to trig-
ger their own unsolicited samplings to MSA. The sensor communicates with
the MSA over a normal UNIX socket using a proprietary simple text protocol.

The local monitoring data repository (cache) is available for local con-
sumers of monitoring data. This is useful for allowing local fault tolerance
correlation engines and may be used to resend data to the central repository
in case of sending data has failed. The cache is implemented as a flat text
file database, with one file per metric per day. Each line contains a single
measurement in the format timestamp value.

5.1.2. Data access
Data may be accessed through the repository API. The API does not distin-
guish different data types (must be handled by the client of the API). The API
provides methods to insert samples into a repository, to query samples and to
subscribe for change notification. The result of queries may contain one to
many samples. Queries may be restricted to the latest measurement or may
refer to measurements taken over a given period.

Bindings for various languages can be generated from the WSDL descrip-
tion of the API.

5.1.3. Data transport
The transport of monitoring data from the monitored hosts to the central
repository is also pluggable. Implementations for both UDP and TCP (proto-
typic) exist. The TCP based implementation uses permanently open sockets
and includes a proxy like mechanism to fan-out the number of open connec-
tions on the central repository to a subset of the monitored hosts. On the proxy
hosts the transport component of the MSA not only sends the monitoring data
of the host itself, but it also receives and forwards data from other MSAs. The
proxy environment must be configured statically.
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5.1.4. Data storing
The central measurement repository server uses the repository API to plug-in
any database system as backend. So far, backends for flat files (same as for
the local repository), Oracle (called OraMon), and ODBC (prototypic) have
been developed.

5.2. CURRENT STATUS

Lemon is has been used within the GridICE [12] project and at Cern’s com-
puting center for collecting data from over 1600 nodes for over a year. It has
been observed that the MSA has a low footprint at monitored hosts, while
approximately 150 sensors have been used. Also, a GUI was developed to
let clients easily browse through data samples and handle alarms (prototype).
OraMon provides an SQL interface to the repository.

6. Fault Detection and Recovery

The aim of the Fault Detection and Recovery system (FDR) is to provide
automatic error detection and correction, i.e. self-healing of a fabric. In a large
cluster or fabric one faulty node can cause serious problems for the whole
grid. For example a broken DNS server or a broken gateway may disconnect a
whole fabric from the grid. Another problem may be that a normal computing
node may cause a long delay in the analysis job or may even cause the total
failure of a job.

For the described scenario, the Fault Detection and Recovery system must
cope with automatically running tasks that are not commonly found in todays
cluster management systems:

− automatic error prevention,

− automatic error correction,

− schedule repair tasks that would interfere with running jobs.

The FDR system differs from existing tools like VACM [30], Patrol [22],
and Performance Co-Pilot [23]. VACM is a centralized cluster administration
system which is not able to react on alerts in more than one way. Patrol is very
limited in its functionality, because it provides only a small set of services like
CPU load monitoring, disk space controlling or watching the instances of
running daemons. Performance Co-Pilot is useful for detecting performance
problems in clusters, but does not support automatic recovery actions. The
WP4 Fault Tolerance software offers a non centralized fault recovery system
which is freely configurable and can combine results from more than one
sensor to detect more complex faults.
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6.1. ARCHITECTURE OF THE FAULT-TOLERANCE SYSTEM

The FDR system is rule based. Each rule compares data retrieved from the
monitoring system against configured limits. If the condition of a rule holds,
the specified action is performed. Fig. 6 shows the components of the FDR
system.

Figure 6. Components of the fault tolerance system

6.1.1. Fault Tolerance Correlation Engine
The Fault Tolerance Correlation Engine (FTCE) is the active correlation en-
gine. The FTCE runs as a daemon process on all hosts and is implemented
to be robust to most system component failures. The FTCE processes ob-
serve one or several metrics stored in the MR to determine if something
has gone wrong or is on its way to go wrong on the system. If so, it de-
termines what recovery actions are needed, and launches the corresponding
actions. Its output metric values contain a boolean flag that reflects if any fault
tolerance actuators were launched, and if so, the identifiers of the actuators
and their return status. The FTCE processing for a given metric is triggered
either through a periodic sampling request from the MSA (see Section 5.1)
or through the metric subscription/notification mechanism provided by the
monitoring repository.

6.1.2. Fault Tolerance Actuators
A Fault Tolerance Actuator (FTA) is an implementation of the FaultToler-
anceActuator interface that executes automatic recovery actions. The FTA is
typically driven by rules stored in the Configuration Management subsystem
(see Section 4). A given FTA implementation can thus be used for several
similar recovery actions, e.g. a single “daemon restart”. Another example for
an FTA, is a service restarter, i.e. by calling the restart method of the installed
software packages.
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6.1.3. Fault Tolerance Rules
A Fault Tolerance Rule (FTR) contains all necessary information about the
controlled values on the nodes and the actuators that should be started if a
value runs out of its defined limit. The interface for the actuator is as simple
as possible: it may be a shell or an executable. The administrator is able to
configure up to 64 levels of actuators, which may be started in sequence if
the actuator that was started before was not able to fix the problem. FTRs are
described in XML. Fig. 7 shows an example of a rule.

<edg ft rule>

<event>

<level>

<actuator shell="noshell">

<actuatorname>pwd</actuatorname>

<argument number="0"></argument>

<actuatorpath>/bin/</actuatorpath>

</actuator>

</level>

<rule>

<lookup>

<node id>lxshare0314.cern.ch</node id>

<metric id>9501</metric id>

</lookup>

<mo>!=</mo>

<value>1</value>

</rule>

</event>

</edg ft rule>

Figure 7. Example of a fault tolerance rule

The example rule compares (op !=) a specific metric (id 9501) sampled
at host faulty against the value 1. If the condition holds, the command
/bin/pwd is executed.

6.2. CURRENT STATUS

We implemented the described architectural framework in a daemon (FTCE)
that provides a generic interface for the rules. By design, the framework is
highly scalable, because most of the activity may run locally on a single node.
An administrator can easily setup correlations of many remote nodes and
can start actuators remotely. Therefore a global fault tolerance server for a
whole fabric may not be necessary, because the administrator can distribute
this functionality on a large number of nodes to increase the reliability of the
fabric. In this scenario a normal computing node may be responsible for its
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own functionality and for one part of the fabric as well, e.g. for a switch,
a UPS or a fabric wide air conditioning system which is connected to the
monitoring.

7. Gridification

Grid job submission and file access using GridFTP have traditionally been
protected using a simple version of the Grid Security Infrastructure (GSI) [10].
Authorization in traditional GSI is based on a single user access list (the
so-called grid-mapfile), explicitly naming individuals that are allowed to
access a service. For those services that need a system-local principal, this
list also provides a mapping between the user’s distinguished name and that
of the local principal.

The components LCAS (Local Center Authorization Service) and LCMAPS
(Local Credential MAPping Service) represent two functions to access the
local fabric: pure authorization and the assignment of local credentials, re-
spectively. The main incentive for this split is to enable global authorization
decisions to be made without the need to interact with system-local credential
services. Such local services are likely to be more resource-intensive than the
pure authorization decision itself.

Besides the traditional grid-mapfile solution for local site authorization
described above, the PRIMA system [19] was developed, which is similar
to LCAS. The PRIMA system is driven by an XACML policy and uses
the globus authorization call-out mechanism in the Gatekeeper and GridFTP
server. The development of this call-out mechanism was triggered among
others by the development of LCAS, but it lacks the possibility to incorporate
job characteristics in the authorization decision process, in contrast to LCAS
and LCMAPS.

7.1. ARCHITECTURE OF THE GRIDIFICATION COMPONENTS

Figure 8 shows the architecture of the Grid Access system and presents the
interaction of the different components. A job request consisting of the usual
description (e.g. executable name, in- and output files, wallclock limit, etc.)
and a (proxy) certificate is sent to the Gatekeeper. Then the request must be
authorized by the LCAS (indicated by (1) in Fig. 8). For authorization the
LCAS invokes a set of plug-ins until the request is denied or allowed to pro-
ceed (2). Next, the Gatekeeper asks the LCMAPS to acquire local credentials
to the job and to enforce the use of these credentials, e.g. by setting the user ID
(uid) and group ID (gid), etc (3). If all actions have been passed successfully
(4), the job is forwarded to the local cluster batch system.
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Figure 8. Components for managing access to fabric resources

7.1.1. The Local Center Authorization Service
The Local Center Authorization Service (LCAS) allows authorization deci-
sions based on user credential information and service request characteristics.
It provides a framework for pluggable authorization that is interfaced directly
to the service daemon.

The LCAS framework is enabled by loading the LCAS service library in
the service daemon (at this time both the Gatekeeper and GridFTP have been
equipped with the appropriate hooks for communicating with LCAS). This
LCAS library reads a text-based configuration file listing the authorization
plug-ins to be invoked. Each plug-in is a stand-alone shared object, to be
loaded on LCAS startup, with three pre-defined entry points (initialize,
confirm authorization and terminate). During authorization, the LCAS
service will call each plug-in in turn, in the order specified in the setup file,
until a module denies access to the request or no more modules are available.
If any module denies the access, LCAS will return an authorization failure to
the calling service (e.g. the Gatekeeper).

Since modules are stand-alone objects, they can be updated or replaced
by the system administrator without recompilation of the service daemon
itself. Also, new modules can be written and added to the authorization chain.
Three standard modules are supplied with the system: an “allowed users”
module (providing functionality similar to the traditional grid-mapfile), a
“ban users” module (allowing instant denial of service to specific users) and
a “time-slot” module (placing wallclock time constraints on acceptance of
requests).
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7.1.2. The Local Credential Mapping Service
The Local Credential Mapping Service (LCMAPS) is a pluggable framework
like LCAS. However, in order to merge into pre-existing services that use
the Grid Security Infrastructure, LCMAPS is equipped with a more advanced
policy language and multiple entry interface. It can be used without recompi-
lation or re-linking of either the Gatekeeper and GridFTP daemons. Virtually
all existing computer systems require that a process or action is performed
using one or more credentials. On traditional POSIX systems, this is a user
ID (uid) and one or more group IDs (gids), with one specific uid and gid
having elevated privileges. Other systems use AFS or Kerberos5 in lieu of, or
next to the conventional POSIX authentication. Therefore, it is necessary to
provide any user request that will create a process or access data directly via
the filesystem layer with (a set of) local credentials.

Conventional GSI provides a direct one-to-one mapping between the client’s
distinguished name (DN) and a pre-existing local credential. Moreover, the
Gatekeeper service can also acquire a Kerberos5 ticket, if so instructed by the
system administrator. There is no provision either for users that are not known
to the system beforehand, or to acquire privileges based on VO membership,
as e.g. provided by the VO Membership Service (VOMS) [1] The former
point (unknown users) has been addressed by the pool accounts extension to
GSI [11], but this is still limited to conventional UNIX credentials (uid and
gid), and does not support membership of multiple VOs.

LCMAPS provides a policy-driven framework for acquiring and enforc-
ing local credentials, based on the complete security context, which includes
the VOMS attributes contained in the user proxy certificate, and the job de-
scription. In addition a legacy interface is provided by which the credential
mapping is based on only the user’s DN. For reasons of system integrity,
LCMAPS comes only as a library and cannot operate as a stand-alone dae-
mon. Also, since the operations that LCMAPS might perform can be expen-
sive (like creating a new account on-the-fly) it is required that all relevant
authorization decisions have been completed successfully by LCAS.

The LCMAPS system is initialized on service startup (Gatekeeper or GridFTP
daemon). It consists of two principal components: a plug-in manager and an
evaluation manager (not shown in the figure). The plug-in manager is in con-
trol of the plug-in modules and is the only component that has direct access
to them. The evaluation manager reads and compiles the policy description.
Upon receipt of an LCMAPS request it asks the plug-in manager to run the
plug-ins in the order prescribed by the policy.

There are two different logical module types: acquisition modules and
enforcement modules. Acquisition modules look-up (or create) accounts in
the system and assign group IDs, based on e.g. VOMS attributes. In the
LCMAPS service a credential object is filled with the acquired credential
identifiers. Enforcement modules take the content of the credential object and
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attempt to enforce the credentials listed. There is no difference in the interface
between acquisition and enforcement modules. The result (success/failure) of
the credential mapping is returned to the calling application.

7.2. CURRENT STATUS

All the Gridification components have been deployed in all EU DataGrid
testbed sites. They have also been adopted by other grid projects such as
Crossgrid [7]. Also the project VL-E (Virtual Laboratory for E-science) in
the Netherlands [31] has chosen to use the Gridification components.

LCAS and LCMAPS will continue to evolve within a grid services archi-
tecture in the framework of the security joint research activity in the EGEE
project [9]. LCAS will probably take on the use of XACML (a likely GGF
standard for expressing access policies) for expressing VO access rights.

8. Conclusion

In the course of the EU project DataGrid we designed, implemented and
deployed a framework for the coordinated, autonomous management of mul-
tiple heterogeneous clusters in a fabric. The framework consists of the fol-
lowing building blocks:

− the Resource Management System for handling jobs from different sources,

− the quattor system for software installation and configuration,

− the Lemon component for monitoring the system’s status,

− the FT mechanism for fault detection and recovery, and

− the Gridification scheme for integrating fabrics into a Grid.

These set of components allow to reduce the human maintenance in a
cluster computing center drastically. With automation and rule based error
handling the system is open for extensions and future requirements.
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