Probing the hierarchy problem with the LHC
Fabiola Gianotti (CERN)
Extra-dimensions
Additional dimensions
$\Rightarrow M_{\text{gravity}} \sim M_{\text{EW}}$
New states at TeV scale

Little Higgs
SM embedded in larger gauge group
New particles at TeV scale, stable m_H

Technicolour
New strong interactions break EW symmetry
\Rightarrow Higgs (elementary scalar) removed
New particles at TeV scale

Split SUSY
Accept fine-tuning of m_H
(and of cosm. constant)
by anthropic arguments
Part of SUSY spectrum at TeV scale
(for couplings unification and dark matter)

LHC potential for \simall these scenarios demonstrated since long time. Here:
① What can be done at the beginning?
② Signal interpretation and constraints of underlying theory?
What can be done at the beginning?

The first LHC data: from Summer 2007...

\[1 \text{ fb}^{-1} (10 \text{ fb}^{-1}) \equiv 6 \text{ months at } 10^{32} (10^{33}) \text{ cm}^{-2}\text{s}^{-1} \text{ at 50\% efficiency} \rightarrow \text{may collect} \]
\[\text{several fb}^{-1} \text{ per experiment by end 2008} \]

<table>
<thead>
<tr>
<th>Channels (examples...)</th>
<th>Events to tape for 1 fb(^{-1}) (per expt: ATLAS, CMS)</th>
<th>Total statistics from previous Colliders</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W \rightarrow \mu \nu)</td>
<td>(7 \times 10^6)</td>
<td>(\sim 10^4 \text{ LEP, } \sim 10^6 \text{ Tevatron})</td>
</tr>
<tr>
<td>(Z \rightarrow \mu \mu)</td>
<td>(\sim 10^6)</td>
<td>(\sim 10^6 \text{ LEP, } \sim 10^5 \text{ Tevatron})</td>
</tr>
<tr>
<td>(t\bar{t} \rightarrow W b W b \rightarrow \mu \nu +X)</td>
<td>(\sim 10^5)</td>
<td>(\sim 10^4 \text{ Tevatron})</td>
</tr>
<tr>
<td>(\tilde{g}\tilde{g} \quad m = 1 \text{ TeV})</td>
<td>(10^2 - 10^3)</td>
<td>---</td>
</tr>
</tbody>
</table>

With these data:

- **Understand and calibrate detectors in situ using well-known physics samples**

 e.g. - \(Z \rightarrow ee, \mu\mu\) tracker, ECAL, Muon chambers calibration and alignment, etc.
 - \(t\bar{t} \rightarrow bl\nu bjj\) jet scale from \(W\rightarrow jj\), b-tag performance, etc.

- **Measure SM physics at \(\sqrt{s} = 14 \text{ TeV}\): \(W, Z, t\bar{t}, \text{QCD jets}...\)** (omnipresent backgrounds to New Physics)

\(\rightarrow\) prepare the road to discovery it will take a lot of time ...
Preparing the detectors to explore the hierarchy problem...

Example: the ATLAS electromagnetic calorimeter

Pb-liquid argon sampling calorimeter with Accordion shape, covering $|\eta| < 2.5$

$H \rightarrow \gamma\gamma$: to observe signal peak on top of huge $\gamma\gamma$ background, need mass resolution of $\sim 1\% \rightarrow$ response uniformity (i.e. total constant term of E-resolution) $\leq 0.7\%$ over $|\eta| < 2.5$
Construction quality

Thickness of Pb plates must be uniform to 0.5% (~10 μm)

End-cap: 1536 plates

< > ~ 2.2 mm

σ ≈ 9 μm

Test-beam measurements

Scan of a barrel module (Δφ x Δη=0.4x1.4) with high-E electrons

After correction: r.m.s. ≈ 0.57% over ~ 500 spots
3 Cosmics runs:

Measured cosmic μ rate in ATLAS pit: few Hz
→ $\sim 10^6$ events in \sim 3 months of cosmics runs beginning 2007
→ enough for initial detector shake-down
→ ECAL: check calibration vs η to 0.5%

4 First collisions: calibration with $Z \rightarrow e e$ events (rate ≈ 1 Hz at 10^{33})

Use Z-mass constraint to correct long-range non-uniformities
(module-to-module variations, effect of upstream material, etc.)
$\sim 10^5 Z \rightarrow e e$ events (few days data taking at 10^{33}) enough to achieve constant term $c \leq 0.7$

Nevertheless, let's consider the worst (unrealistic?) scenario: no corrections applied
ECAL non-uniformity at construction level, i.e.:
-- no test-beam corrections
-- no calibration with $Z \rightarrow e e$

\[H \rightarrow \gamma \gamma \] significance \(m_H \approx 115 \text{ GeV} \) degraded by ~ 25
→ need 50% more L for discovery
First cosmic muons observed by ATLAS in the pit on June 20th (recorded by hadron Tilecal calorimeter)
Example of initial SM measurement: top signal and top mass
(relevant to New Physics.....)

- Use gold-plated $t\bar{t} \rightarrow bW bW \rightarrow blv bjj$ decay
- Very simple selection:
 -- isolated lepton (e, μ) $p_T > 20$ GeV
 -- exactly 4 jets $p_T > 40$ GeV
 -- no kinematic fit
 -- no b-tagging required (pessimistic, assumes trackers not yet understood)
- Plot invariant mass of 3 jets with highest p_T

<table>
<thead>
<tr>
<th>Time</th>
<th>Events at 10^{33}</th>
<th>Stat. error δM_{top} (GeV)</th>
<th>Stat. error $\delta \sigma/\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>3×10^5</td>
<td>0.1</td>
<td>0.2%</td>
</tr>
<tr>
<td>1 month</td>
<td>7×10^4</td>
<td>0.2</td>
<td>0.4%</td>
</tr>
<tr>
<td>1 week</td>
<td>2×10^3</td>
<td>0.4</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

- Top signal visible in few days also with simple selection and no b-tagging
- Cross-section to $\sim 20\%$
- Top mass to ~ 7 GeV (assuming b-jet scale to 10%)
- Get feedback on detector performance: m_{top} wrong \rightarrow jet scale?
- Gold-plated sample to commission b-tagging
- $t\bar{t}$ is background to many searches
What about early discoveries?
Three examples relevant to the hierarchy problem ...

An easy case: a new (narrow) resonance of mass ~ 1 TeV decaying into e^+e^-, e.g. a Z' or a Graviton $\rightarrow e^+e^-$ of mass ~ 1 TeV

An intermediate case: SUSY

A difficult case: a light Higgs ($m_H \sim 115$ GeV)
An “easy case”: $G \rightarrow e^+e^-$ resonance with $m \sim 1$ TeV

BR ($G \rightarrow ee \approx 2\%$), $c = 0.01$ (small/conservative coupling to SM particles)

<table>
<thead>
<tr>
<th>Mass (TeV)</th>
<th>Events for 10 fb$^{-1}$ (after all cuts)</th>
<th>$\int L , dt$ for discovery (≥ 10 observed events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>~ 80</td>
<td>~ 1.2 fb$^{-1}$</td>
</tr>
<tr>
<td>1.1</td>
<td>~ 25</td>
<td>~ 4 fb$^{-1}$</td>
</tr>
<tr>
<td>1.25</td>
<td>~ 13</td>
<td>~ 8 fb$^{-1}$</td>
</tr>
</tbody>
</table>

- large enough signal for discovery with $\int L \, dt < 10$ fb$^{-1}$ for $m < 1.3$ TeV
- dominant Drell-Yan background small
- signal is mass peak above background

C. Collard

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

F. Gianotti, Lepton-Photon 2005
An “intermediate case” : SUPERSYMMETRY

If SUSY stabilizes \(m_H \rightarrow \) is at TeV scale \(\rightarrow \) could be found quickly thanks to:

- large \(\tilde{q}\tilde{q}, \tilde{g}\tilde{g}, \tilde{g}\tilde{g} \) cross-section \(\rightarrow \approx 100 \text{ events/day} \) at \(10^{33} \) for \(m(\tilde{q}, \tilde{g}) \approx 1 \text{ TeV} \)
- spectacular signatures

\[
\begin{align*}
\sigma_{\text{discovery curves}} \\
\text{~ one year at } 10^{34}: \text{~ up to } \approx 2.5 \text{ TeV} \end{align*}
\]

\[
\begin{align*}
\text{~ one year at } 10^{33}: \text{~ up to } \approx 2 \text{ TeV} \\
\text{~ one month at } 10^{33}: \text{~ up to } \approx 1.5 \text{ TeV}
\end{align*}
\]

Using multijet + \(E_T^{\text{miss}} \) (most powerful and model-independent signature if R-parity conserved)

First/fast determination of SUSY (squark, gluino) mass scale from distribution of \(E_T^{\text{miss}} + \Sigma p_T \) (jets)
A difficult case: a light Higgs ($m_H \sim 115$ GeV) ...

Full GEANT simulation, simple cut-based analyses

<table>
<thead>
<tr>
<th></th>
<th>$H \rightarrow \gamma \gamma$</th>
<th>$ttH \rightarrow ttbb$</th>
<th>$qqH \rightarrow qq\tau\tau$ (ll + l-had)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>130</td>
<td>15</td>
<td>~ 10</td>
</tr>
<tr>
<td>B</td>
<td>4300</td>
<td>45</td>
<td>~ 10</td>
</tr>
<tr>
<td>S/\sqrt{B}</td>
<td>2.0</td>
<td>2.2</td>
<td>~ 2.7</td>
</tr>
</tbody>
</table>

K-factors $\equiv \sigma(\text{NLO})/\sigma(\text{LO}) \approx 2$ not included
Remarks:

Each channel contributes ~ 2σ to total significance → observation of all channels important to extract convincing signal in first year(s)

The 3 channels are complementary → robustness:

- different production and decay modes
- different backgrounds
- different detector/performance requirements:
 - ECAL crucial for $H \rightarrow \gamma\gamma$ (in particular response uniformity) : $\sigma/m \sim 1\%$ needed
 - b-tagging crucial for ttH : 4 b-tagged jets needed to reduce combinatorics
 - efficient jet reconstruction over $|\eta| < 5$ crucial for $qqH \rightarrow qq\tau\tau$: forward jet tag and central jet veto needed against background

Note: -- all require “low” trigger thresholds

E.g. ttH analysis cuts : $p_T(l) > 20$ GeV, p_T (jets) > 15-30 GeV

-- all require very good understanding (1-10%) of backgrounds
If \(m_H > 180 \text{ GeV} \): early discovery may be easier with \(H \rightarrow 4l \) channel

Luminosity needed for 5\(\sigma \) discovery (ATLAS+CMS)

\[\begin{array}{c}
\text{CMS, 10 fb}^{-1} \\
\text{Signal} \\
\text{Backgr} \\
\end{array} \]

- \(H \rightarrow WW \rightarrow l^+l^-l^+l^- \): high rate (~100 evts/expt) but no mass peak
 - not ideal for early discovery ...
- \(H \rightarrow 4l \) (l=e,\(\mu \)): low-rate but very clean: narrow mass peak, small background

Extra-dimensions (ADD models)

Look for a continuum of Graviton KK states:

\[q \rightarrow \text{jet(s)} + \text{missing } E_T \]

\[g \rightarrow G \]

→ topology is jet(s) + missing \(E_T \)

Cross-section \[\approx \frac{1}{M_D^{\delta+2}} \]

\(M_D \) = gravity scale
\(\delta \) = number of extra-dimensions

<table>
<thead>
<tr>
<th>(\delta = 2)</th>
<th>(\delta = 3)</th>
<th>(\delta = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_D^{\text{max}})</td>
<td>9 TeV</td>
<td>7 TeV</td>
</tr>
</tbody>
</table>

To characterize the model need to measure \(M_D \) and \(\delta \)

Measurement of cross-section gives ambiguous results: e.g. \(\delta = 2, M_D = 5 \) TeV very similar to \(\delta = 4, M_D = 4 \) TeV

Solution may be to run at different \(\sqrt{s} \):

ATLAS, 100 fb\(^{-1}\)

ATLAS

Discriminating between models:
-- SUSY : multijets plus \(E_T^{\text{miss}} \) (+ leptons, ...)
-- ADD : monojet plus \(E_T^{\text{miss}} \)

Good discrimination between various solutions possible with expected <5% accuracy on \(\sigma(10)/\sigma(14) \) for 50 fb\(^{-1}\)
Little Higgs models

Alternative approach to the hierarchy problem predicting heavy top T (EW singlet), new gauge bosons W_H, Z_H, A_H and Higgs triplet $\Phi^0, \Phi^+, \Phi^{++}$

Observation of $T \rightarrow Zt, Wb$ discriminates from 4th family quarks
Observation of $V_H \rightarrow Vh$ discriminates from W', Z'

$V_H \rightarrow Vh$
$m_h=120$ GeV

$T \rightarrow Zt \rightarrow ll b\nu$

$ATLAS$
300 fb$^{-1}$
Other scenarios

Leptoquarks: $lq lq \rightarrow lj lj$

Large number of scenarios studied:
\rightarrow demonstrated detector sensitivity to many signatures
\rightarrow robustness, ability to cope with unexpected scenarios
\rightarrow LHC direct discovery reach (hence exploration of hierarchy problem ...) up to $m \approx 5-6$ TeV

CMS, 10 fb$^{-1}$
$BR=1.9 \times 10^{-6}$
Reach (30 fb$^{-1}$): $BR < 4 \times 10^{-8}$

Excited leptons: $e^* e, e^* \rightarrow W\nu \rightarrow jj \nu$

ATLAS, 300 fb$^{-1}$

LFV: $W \rightarrow \tau\nu, \tau \rightarrow 3\mu$

F. Gianotti, Lepton-Photon 2005
Constraining the underlying theory ...

Measurements of the SM Higgs parameters

Lot of useful information to constrain the theory (though not competitive with LC precision of e.g. ≈% on couplings)

F. Gianotti, Lepton-Photon 2005
Higgs self-coupling \(\lambda \)
- not accessible at LHC
- may be constrained to \(\approx 20\% \) at Super-LHC (L=10^{35})

\[m_H^2 = 2 \lambda \nu^2 \]

Higgs spin and CP
Promising for \(m_H > 180 \) GeV \((H \rightarrow ZZ \rightarrow 4l)\),
difficult at lower masses

Significance for exclusion of \(J^{CP}=0^- \)

<table>
<thead>
<tr>
<th>(m_H) (GeV)</th>
<th>(J^{CP} = 1^+)</th>
<th>(J^{CP} = 1^-)</th>
<th>(J^{CP}=0^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>6.5 (\sigma)</td>
<td>4.8 (\sigma)</td>
<td>40 (\sigma)</td>
</tr>
<tr>
<td>250</td>
<td>20 (\sigma)</td>
<td>19 (\sigma)</td>
<td>80 (\sigma)</td>
</tr>
<tr>
<td>300</td>
<td>23 (\sigma)</td>
<td>22 (\sigma)</td>
<td>70 (\sigma)</td>
</tr>
</tbody>
</table>

Buszello et al. SN-ATLAS-2003-025

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
Mass peaks cannot be directly reconstructed \((\chi^0_1 \text{ undetectable})\) → measure invariant mass spectra (end-points, edges,..) of visible particles → deduce constraints on combinations of sparticle masses.

Precise SUSY measurements

\[
\begin{align*}
\text{m (l+\bar{l}−) spectrum} & \quad \text{m (lll)min spectrum} \\
\text{end-point} : 77 \text{ GeV} & \quad \text{end-point: 431 GeV} \\
\text{experim. precision } \sim 0.1\% & \quad \text{experim. precision } \sim 1\%
\end{align*}
\]

\[
m(\tilde{q}_L \chi^0_2 \tilde{\ell}_R \chi^0_1) = (540, 177, 143, 96 \text{ GeV})
\]

ATLAS, 100 fb\(^{-1}\)

mSUGRA Point “SPS1A”

Courtesy B. Gjelsten
Putting all measurements together:

- deduce several sparticle masses: typical precision 1%-20%
 Model-indep. (just kinematics), but interpretation is model-dep.
- from fit of model to all experimental measurements derive
 -- sparticle masses with higher accuracy
 -- fundamental parameters of theory to 1-30%
 -- dark matter \((\chi^0_1)\) relic density and \(\sigma (\chi^0_1 -\text{nucleon})\)

\[
\delta(\Omega h^2) \approx 3\%
\]

ATLAS, 300 fb\(^{-1}\)

mSUGRA, Point “SPS1A”

\(\Omega h^2\)

\(\Omega h^2\)

DAMA

Zepelin, CDMS, Edelweiss
--- present limit
--- projected

LHC data

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
General strategy toward understanding the underlying theory
(SUSY as an example ...)

Discovery phase: inclusive searches ... as model-independent as possible

First characterization of model: from general features: Large E_T^{miss}? Many leptons? Exotic signatures (heavy stable charged particles, many γ's, etc.)? Excess of b-jets or τ's? ...

Interpretation phase:
- reconstruct/look for semi-inclusive topologies, eg:
 -- $h \rightarrow bb$ peaks (can be abundantly produced in sparticle decays)
 -- di-lepton edges
 -- Higgs sector: e.g. $A/H \rightarrow \mu\mu, \tau\tau \Rightarrow$ indication about $\tan\beta$, measure masses
 -- tt pairs and their spectra \Rightarrow stop or sbottom production, gluino \rightarrow stop-top
- determine (combinations of) masses from kinematic measurements (e.g. edges ...)
- measure observables sensitive to parameters of theory (e.g. mass hierarchy)

At each step narrow landscape of possible models and get guidance to go on:
- lot of information from LHC data (masses, cross-sections, topologies, etc.)
- consistency with other data (astrophysics, rare decays, etc.)
- joint effort theorists/experimentalists will be crucial
What the LHC can do and cannot do ….

In general the LHC can (examples ...):
- discover SUSY up to $m(\sim\tilde{q},\tilde{g}) \sim 2.5$ TeV
- measure lightest Higgs h mass to ~ 0.1
- derive sparticle masses (typically $\sim\sim, \chi_0^2$) from kinematic measurements
- constrain underlying theory by fitting a model to the data

More difficult or impossible (examples ...):
- disentangle squarks of first two generations
- observe / measure sleptons if $m > 350$ GeV
- measure full gaugino spectrum
- measure sparticle spin-parity and all couplings
- constrain underlying theory in model-indep. way

\[\frac{1}{M_3} = m(\tilde{g}) \]

complementarity with LC

Ultimate goal: from precise measurements of e.g. gaugino masses at the TeV scale reconstruct high-E theory
Conclusions

• In 2 years from now, particle physics will enter a new epoch, hopefully the most glorious and fruitful of its history.

• Indeed, the hierarchy problem motivates strongly New Physics at the TeV scale

• The LHC will explore this scale in detail with direct discovery potential up to $m \approx 5-6$ TeV
 → if New Physics is there, the LHC will find it
 → it will say final word about many TeV-scale predictions
 → it will tell us which are the right questions to ask, and how to go on
Has Nature prepared a “pleasant” welcome to the TeV-scale (striking signals with limited luminosity and non-ultimate detector performance) or shall we have to sweat through years of data taking and hard work before we can claim a discovery?

Early determination of scale of New Physics would be crucial for planning of future facilities (ILC ? CLIC ? Underground Dark Matter searches ?) The future of our discipline will benefit from a quick feedback on SUSY and the rest .. !

Next challenge: efficient and as-fast-as-possible commissioning of machine and detectors of unprecedented complexity, technology and performance
From E. Fermi, preparatory notes for a talk on "What can we learn with High Energy Accelerators?" given to the American Physical Society, NY, Jan. 29th 1954

For these reasons, clamoring for higher and higher...

Slide 1 - MeV vs. M_S versus time.
Extrapolating to 1994...5 hi 9 Mev or hi est cosmic...170 B$,...preliminary
design...8000 km, 20000 gauss

Slide 2 - 5 hi 17 eV machine.

Why we can learn impossible to guess...main element surprise...some
things look for but see others...Experience on pions...sharpening
knowledge...spin axes and additivity...certainly look for multiple
production...

Fermi's extrapolation to year 1994:
2T magnets, $R=8000$ Km machine
$E_{beam} \sim 5 \times 10^3$ TeV, cost 170 B$

University of Chicago library
(thanks to M.Oreglia)
Many thanks to:

C. Collard, A. De Roeck, B. Gjelsten, K. Moening, L. Pape, G. Polesello, W. Porod, D. Tovey