Spare slides
\(H \rightarrow \gamma\gamma \) \hspace{1cm} \(m_H \leq 150 \text{ GeV} \)

- \(\sigma \times \text{BR} \approx 50 \text{ fb} \) \hspace{1cm} (BR \approx 10^{-3})

- Backgrounds:

-- \(\gamma\gamma \) (irreducible): e.g. \(q \rightarrow \gamma \gamma \) \(q \rightarrow \gamma \gamma \)

\[
\sigma_{\gamma\gamma} \approx 2 \text{ pb / GeV} \quad \Gamma_H \approx \text{MeV}
\]

\[\rightarrow \text{need } \sigma(m)/m \approx 1\% \]

-- \(\gamma j^+ jj \) (reducible):

\[
\sigma_{\gamma j^+ jj} \sim 10^6 \sigma_{\gamma\gamma} \quad \text{with large uncertainties}
\]

\[\rightarrow \text{need } R_j > 10^3 \quad \text{including } R(\pi^0) > 3, \text{ for } \varepsilon_\gamma \approx 80\% \text{ to get } \sigma_{\gamma j^+ jj} \ll \sigma_{\gamma\gamma} \]

\[\rightarrow \text{most demanding channel for EM calorimeter performance: energy and angle resolution, response uniformity, } \gamma/\text{jet and } \gamma/\pi^0 \text{ separation} \]

ATLAS and CMS: different technology and design, complementary performance
$\text{ttH} \rightarrow \text{ttbb}$ \hspace{1cm} $m_H \leq 130$ GeV

- $\sigma \times \text{BR} \approx 300$ fb
- Complex final state: $H \rightarrow bb, t \rightarrow bjj, t \rightarrow blv$

- Main backgrounds:
 - combinatorial from signal (4b in final state)
 - $Wjjjjjjj, WWbbjj$, etc.
 - $ttjj$ (dominant, non-resonant)

\rightarrow crucial performance aspect: b-tagging

$\Gamma = e, \mu$ for trigger and background rejection

reduced by b-tagging the four b-jets and reconstructing both top quarks

C_{MS}

$\text{ttH, } H \rightarrow bb$

$m_H: 115$ GeV$/c^2$

$k = 1.5$

$\text{CMS, } \text{ttH} \rightarrow \text{ttbb}$

30 fb$^{-1}$

$\sigma_m \sim 15$ GeV

F. Gianotti, Bruno Touschek school, Frascati, 15/5/2006
Vector Boson Fusion $qqH \rightarrow \tau\tau$

$m_H \leq 200$ GeV

$\sigma = 4$ pb (20% of total cross section for $m_H = 130$ GeV)

Very distinct signature:
- two forward jets
- little jet activity in central region

Experimental issues:
- forward jet reconstruction (hermetic calorimetry over $|\eta|<5$)
- jet veto in the central region

Zjj ($Z \rightarrow \tau\tau$) background from Zjj ($Z \rightarrow ee$)

ATLAS, $qqH \rightarrow \tau\tau$

30 fb$^{-1}$

$m_H = 120$ GeV

Zjj

$t\bar{t}$, WW EW

F. Gianotti, Bruno Touschek school, Frascati, 15/5/2006
What is wrong with the SM?

- **Origin of particle masses** → where is the Higgs boson?

- "**Naturalness**" problem:

 radiative corrections

 \[\delta m_H^2 \sim \Lambda^2 \]

 \(\rightarrow \Lambda \equiv \text{scale up to which SM is valid} \)

- "**Hierarchy**" problem: why \(M_{EW}/M_{Planck} \sim 10^{-17} \)? Is there anything in between?

- Flavour/family problem, CP-violation, coupling unification, gravity incorporation, \(\nu \) masses/oscillations, dark matter and dark energy, etc.

All this calls for

A more fundamental theory of which SM is low-E approximation

\[\rightarrow \text{New Physics} \]

Difficult task: solve SM problems without contradicting (the very constraining) EW data
Examples of detector performance requirements

Very selective trigger: 40 MHz (interaction rate) \rightarrow 200 Hz (affordable rate-to-storage)
1 H \rightarrow 4e event every 10^{13} interactions

Lepton measurement: $p_T \approx$ GeV \rightarrow 5 TeV (b \rightarrow l+X, W'/Z', ...)

Mass resolutions:
- $\approx 1\%$ decays into leptons or photons (Higgs, new resonances)
- $\approx 10\%$ W \rightarrow jj, H \rightarrow bb (top physics, Higgs, ...)

Hadron calorimeter linearity understood to $< 1.5\%$ at $E_{jet} \sim 4$ TeV (q compositeness)

Calorimeter coverage: $|\eta|<5$ (SUSY/E_T^{miss}, Higgs/forward jet tag, ...)

Jet energy scale
• mainly from $Z \rightarrow \ell \ell$ events
• $\sim 1 \%$ uncertainty achieved by CDF, D0 (dominated by statistics of control samples)
• goal: 0.2%, to measure m_W to ~ 15 MeV
• systematics dominated by detector: knowledge of tracker material to 1%, overall alignment to $<1\mu$m, B-field to better than 0.1%, etc.

Particle identification:
• $\varepsilon (b) \approx 50\%$ $R(jet) \approx 100$ ($H \rightarrow bb$, SUSY, 3rd generation !!)
• $\varepsilon (\tau) \approx 50\%$ $R(jet) \approx 100$ ($A/H \rightarrow \tau\tau$, SUSY, 3rd generation !!)
• $\varepsilon (\gamma) \approx 80\%$ $R(jet) > 10^3$ ($H \rightarrow \gamma\gamma$)
• $\varepsilon (e) > 70\%$ $R(jet) > 10^5$ (inclusive electron sample)

Absolute luminosity to $<5\%$ ($W/Z/tt$ cross-section measurements, new physics through $\sigma \times BR$ measurements,)
Trigger: one of the big challenges

Must reduce rate from 40 MHz (interaction rate) to ~ 200 Hz (affordable rate to storage)
Must be very selective: e.g. 1 H → 4e event every 10^{13} interactions

⇒ 3-level system

LEVEL 1 TRIGGER
- Hardware-Based (FPGAs ASICs)
- Coarse granularity from calorimeter & muon systems
- 2 µs latency (2.5 µs pipelines)

LEVEL 2 TRIGGER
- Regions-of-Interest “seeds”
- Full granularity for all subdetector systems
- Fast Rejection “steering”
- O(10 ms) processing time

EVENT FILTER
- “Seeded” by Level 2 result
- Potential full event access
- Offline-like Algorithms
- O(1 s) processing time

RATES
- 40 MHz
- 75 kHz
- 2 kHz
- 200 Hz

Trigger/DAQ System
- CALO
- MUON
- TRACKING
- PIPELINE MEMORIES
- DERANDOMIZERS
- READ-OUT DRIVERS (RODs)
- READ-OUT BUFFERS (ROBs)
- EVENT BUILDER
- FULL-EVENT BUFFERS & PROCESSOR SUBFARMS
- MASS STORAGE FOR OFFLINE ANALYSIS
Examples of possible LVL1 and HLT menus

<table>
<thead>
<tr>
<th>Channel</th>
<th>Threshold [GeV]</th>
<th>Rate [kHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive isolated EM</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>Two EM clusters</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Inclusive isolated muon</td>
<td>20</td>
<td>0.8</td>
</tr>
<tr>
<td>Di-muons</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>Tau+ + E_T^miss</td>
<td>25/30</td>
<td>2</td>
</tr>
<tr>
<td>1 jet or 3 jets or 4 jets</td>
<td>200, 90, 65</td>
<td>0.6</td>
</tr>
<tr>
<td>Jet + E_T^miss</td>
<td>50/60</td>
<td>0.4</td>
</tr>
<tr>
<td>Other (calib., pre-scale)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>~25 kHz</td>
</tr>
</tbody>
</table>

- LVL1 rate limited by staging of HLT processors
- HLT rate by cost of offline computing (1 PB/yr)
- Guiding principles of LHC trigger:
 - inclusive approach to the “unknown”, safe overlap with Tevatron reach, avoid biases from exclusive selections, margin for offline optimization and QCD uncertainties, enough bandwidth for calibration/control triggers (esp. at beginning !)
Mass resolution \((m_H \sim 100 \text{ GeV, high } L)\):

ATLAS: 1.3 GeV (sampling calorimeter)

CMS: 0.7 GeV (homogeneous calorimeter)

\[
\frac{\sigma(E)}{E} \approx \frac{10\%}{\sqrt{E}}
\]

\[
\frac{\sigma(E)}{E} \approx 2-5\% \sqrt{E}
\]

ATLAS Pb-LAr

- Full resolution
- Noise contribution
- Subtracted resolution \(dE/E = a \times E + b\)
 - \(a = 9.18 \pm 0.13\%\)
 - \(b = 0.27 \pm 0.04\%\)

CMS (crystals)

- \(\frac{\sigma(E)}{E} = 3.3\% / \sqrt{E} \oplus 0.27\%\)

June 1999
Tower 14 (2080)
Noise = 190 MeV
Runs 29569-30442

F. Gianotti, Bruno Touschek school, Frascati, 15/5/2006
Total acceptance: ≈ 25% larger in ATLAS

CMS:
- \(B = 4T \): 30% of \(\gamma \rightarrow e^+e^- \) lost, some others in the tails of mass spectrum
- no ECAL longitudinal segmentation → vertex measured using secondary tracks of underlying event → often pick up wrong vertex → more tails in the pass spectrum than ATLAS

\[
\frac{S}{\sqrt{B}} \sim \epsilon_\gamma \times \epsilon_{\text{mass bin}}
\]

ATLAS, full simulation
Vertex resolution using EM calo longitudinal segmentation

\(\sigma_z \sim 5.3 \text{ cm at LHC} \)

\[
\frac{S}{\sqrt{B}} \text{ (CMS)} \approx \frac{S}{\sqrt{B}} \text{ (ATLAS)} \approx 6 \quad 100 \text{ fb}^{-1}
\]
LHC: $R(\pi^0) \geq 3$ for $\epsilon(\gamma) \sim 90\%$ needed to reject $\gamma j + jj$ background to $H \rightarrow \gamma\gamma$

Using 4mm η-strips in 1st ECAL compartment

\begin{align*}
\text{Data:} \quad \langle R(\pi^0) \rangle &= 3.54 \pm 0.12 \\
\text{MC:} \quad \langle R(\pi^0) \rangle &= 3.66 \pm 0.10
\end{align*}
Rejection of $\gamma j + jj$ background

ATLAS EM calorimeter:
- 4 mm η-strips in first compartment for γ/π^0 separation
- Longitudinal segmentation into 3 compartments

$R_j > 10^3$ achieved

γ/π^0 separation studied also with test-beam data

What about CMS (crystal size ~ 2.5 cm x 2.5 cm, no longitudinal segmentation; preshower only in end-cap)?
How many “candle” events in ATLAS at the beginning?

- $>10^6-10^7$ minimum bias and QCD jets $p_T > 150$ GeV (if 1% of trigger bandwidth)

Similar statistics to CDF, D0 today

$10 \text{ pb}^{-1} \equiv 1 \text{ month at } 10^{30}$ + < 2 weeks at 10^{31}, $\varepsilon=50%$

$100 \text{ pb}^{-1} \equiv \text{ few days at } 10^{32}$, $\varepsilon=50%$

$1 \text{ fb}^{-1} \equiv 6 \text{ months at } 10^{32}$, $\varepsilon=50%$

$5 \text{ fb}^{-1} \equiv 3 \text{ months at } 10^{32}$ + 3 months at 10^{33}, $\varepsilon=50%$

$\rightarrow \text{ end 2007?}$

$\rightarrow \text{ end 2008?}$
Commissioning ATLAS detector and physics with top events

Can we observe an early top signal with limited detector performance? Can we use such a signal to understand detector and physics?

\[\sigma_{tt} (LHC) \approx 250 \text{ pb} \] for gold-plated semi-leptonic channel

\(\begin{align*}
\text{use simple and robust selection cuts:} \\
p_T(l) &> 20 \text{ GeV} \\
E_T^{\text{miss}} &> 20 \text{ GeV} \\
\text{only 4 jets with } p_T &> 40 \text{ GeV} \\
\end{align*} \}
\varepsilon \sim 5\%$

\(\begin{align*}
\text{no b-tagging required (early days ...)} \\
\text{m (top} \rightarrow \text{jjj) from invariant mass of 3 jets} \\
\text{giving highest top } p_T \\
\text{m (W} \rightarrow \text{jj) from 2 jets with highest momentum in jjj CM frame} \\
\end{align*} \)

Total efficiency, including \(m_{jjj} \) inside \(m_{\text{top}} \) mass bin : \(\sim 1.5\% \) (preliminary and conservative ...)
Expect ~ 100 events inside mass peak for 30 pb$^{-1}$

\rightarrow top signal observable in early days with no b-tagging and simple analysis

Cross-section to 20%, m_{top} to 7 GeV (LHC goal ~1 GeV) with 100 pb$^{-1}$?

tt is excellent sample to:

- commission b-tagging, set jet E-scale using $W \rightarrow jj$ peak
- understand detector performance and reconstruction of several physics objects (e, μ, jets, b-jets, missing E_T, ..)
- understand / tune MC generators using e.g. p_T spectra
- measure background to many searches
Higgs production at LHC

Production mechanisms and cross sections

F. Gianotti, Bruno Touschek school, Frascati, 15/5/2006
Pixels : $\sim 10^8$ channels
First layer at $R \sim 5$ cm
$\sigma (R\phi) \sim 10 \mu m$
$\sigma (z) \sim 60 \mu m$

ATLAS, full simulation

2D b-tag (used here):
$\varepsilon_b = 50\% \hspace{1em} R_j (uds) = 100$ at high L

3D b-tag: R_j is ~ 2 larger for same ε_b

Note:
-- complementary channel to $H \rightarrow \gamma\gamma$
-- large coverage in MSSM
-- allows measurement of top Yukawa coupling
Rapidity distribution of most fwd jets
VBF Higgs events vs tt background

Forward tag jet reconstruction

- ATLFAST no pile-up
- Full simulation no pile-up $E_T > 15$ GeV
- Full simulation with pile-up constant fake tag rate 10%
\[\sigma_m \sim 1.5 \text{ GeV} \]

**CMS, \(t\bar{t}H \rightarrow t\bar{t}bb \)\]

\[m_{t\bar{t}}: 115 \text{ GeV/c}^2 \]

\[k = 1.5 \]

\[\sigma_m \sim 15 \text{ GeV} \]

**ATLAS, \(H \rightarrow \gamma\gamma \)\]

100 fb\(^{-1}\)

\[\gamma\gamma \text{ background from side bands} \]

\[\sigma_m \sim 1.4 \text{ GeV} \]

**ATLAS, \(qqH \rightarrow \tau\tau \)\]

30 fb\(^{-1}\)

\[m_H = 120 \text{ GeV} \]

\[\sigma_m \sim 11 \text{ GeV} \]

**Zjj (\(Z \rightarrow \tau\tau \))\]

background from \(Zjj (Z \rightarrow ee) \)

Background dominated by irreducible component in all cases

Expected signals in low-mass region

\[\sigma_m \sim 15 \text{ GeV} \]

ttbb background from \(ttjj \) with j anti b-tagged

2006
If \(m_H > 180 \text{ GeV} \): early discovery may be easier with \(H \to ZZ \to 4l \) channel

\[H \to 4l \text{ (l=e,\(\mu \))} \]

Events \(/0.5 \text{ GeV} \)

CMS, 10 fb\(^{-1}\)

Signal
Backgr

May be observed with 3-4 fb\(^{-1}\)
(end 2008 ?)
A difficult case: a light Higgs ($m_H \sim 115$ GeV) ...

- Needed $\mathcal{L} dt$ per experiment

- 1 fb^{-1}: 95% C.L. exclusion
- 5 fb^{-1}: 5σ discovery
- Over full allowed mass range
- End 2008?

m_H \sim 115$ GeV 10 fb^{-1}

total $S/\sqrt{B} \approx 4^{+2.2}_{-1.3}$

<table>
<thead>
<tr>
<th>ATLAS</th>
<th>$H \to \gamma\gamma$</th>
<th>$ttH \to ttbb$</th>
<th>$qqH \to qq\tau\tau$ (ll + l-had)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>130</td>
<td>15</td>
<td>~ 10</td>
</tr>
<tr>
<td>B</td>
<td>4300</td>
<td>45</td>
<td>~ 10</td>
</tr>
<tr>
<td>S/\sqrt{B}</td>
<td>2.0</td>
<td>2.2</td>
<td>~ 2.7</td>
</tr>
</tbody>
</table>

F. Gianotti, Bruno Touschek school, Frascati, 15/5/2006

K-factors = σ(NLO)/σ(LO) ≈ 2 not included
Remarks:

Each channel contributes $\sim 2\sigma$ to total significance \rightarrow observation of all channels important to extract convincing signal in first year(s)

The 3 channels are complementary \rightarrow robustness:

- different production and decay modes
- different backgrounds
- different detector/performance requirements:
 -- ECAL crucial for $H \rightarrow \gamma\gamma$ (in particular response uniformity): $\sigma/m \sim 1\%$ needed
 -- b-tagging crucial for ttH: 4 b-tagged jets needed to reduce combinatorics
 -- efficient jet reconstruction over $|\eta| < 5$ crucial for qqH \rightarrow qq$\tau\tau$
 : forward jet tag and central jet veto needed against background

Note: -- all require "low" trigger thresholds
 E.g. ttH analysis cuts: $p_T(l) > 20$ GeV, p_T(jets) > 15-30 GeV
 -- all require very good understanding (1-10%) of backgrounds
Best low-mass channel at the Tevatron

WH → lν bb
(m\(_H\) = 120 GeV)

<table>
<thead>
<tr>
<th>S (14 TeV/ 2 TeV)</th>
<th>B (14 TeV/ 2 TeV)</th>
<th>S/B (14 TeV/ 2 TeV)</th>
<th>S/√B (14 TeV/ 2 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≈ 5</td>
<td>≈ 25</td>
<td>≈ 0.2</td>
<td>≈ 1</td>
</tr>
</tbody>
</table>

H → WW(*)
(m\(_H\) = 160 GeV)

<table>
<thead>
<tr>
<th>S (14 TeV/ 2 TeV)</th>
<th>B (14 TeV/ 2 TeV)</th>
<th>S/B (14 TeV/ 2 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≈ 17</td>
<td>≈ 6</td>
<td>≈ 3</td>
</tr>
</tbody>
</table>

Assuming same integrated luminosity and same detector performance at Tevatron and LHC

Tevatron projections are a bit optimistic:
- no systematics
- optimistic detector performance (e.g. H → bb mass resolution)
- sensitivity from combination of channels with individual significances ≪ 2\(\sigma\)

Still

competition between Tevatron and LHC in 2008–2009 if m\(_H\) < 130 GeV?
Measurements of the SM Higgs parameters

Dominant systematic uncertainty is γ/l absolute energy scale:
- assumed here: 1‰
- goal: 0.2‰ (for m_W measurement)

E-scale from $Z \rightarrow ll$ events
(close to light Higgs)
Measurement of the SM Higgs couplings

Couplings can be obtained from measured rate in a given production channel:

\[R_{ff} = \int L \, dt \, \sigma \left(t^{\pm}, pp \rightarrow H + X \right) \, \text{BR} \left(H \rightarrow \text{ff} \right) \]

\[\text{BR} \left(H \rightarrow \text{ff} \right) = \frac{\Gamma_f}{\Gamma_{tot}} \rightarrow \text{deduce} \quad \Gamma_f \sim g_{Hff}^2 \]

\[\Gamma_{tot} \] and \[\sigma \left(pp \rightarrow H + X \right) \] from theory \(\rightarrow \) without theory inputs measure ratios of rates in various channels \(\left(\Gamma_{tot} \text{ and } \sigma \text{ cancel} \right) \rightarrow \Gamma_f / \Gamma_{f'} \rightarrow \) several theory constraints

- LHC luminosity upgrade (SLHC, \(L = 10^{35} \)) could improve LHC precision by up to \(\sim 2 \) before first LC becomes operational
- Not competitive with LC precision of \(\sim \% \), but useful insight into EWSB mechanism
Higgs self-coupling λ
- not accessible at LHC
- may be constrained to $\approx 20\%$
 at SLHC ($L=10^{35}$ cm$^{-2}$ s$^{-1}$)

$H_2^2 = 2 \lambda v^2$

Higgs spin and CP
Promising for $m_H > 180$ GeV ($H \to ZZ \to 4l$),
difficult at lower masses

Significance for exclusion of other J^{CP} states than 0^+

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>$J^{CP}=1^+$</th>
<th>$J^{CP}=1^-$</th>
<th>$J^{CP}=0^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>6.5 σ</td>
<td>4.8 σ</td>
<td>40 σ</td>
</tr>
<tr>
<td>250</td>
<td>20 σ</td>
<td>19 σ</td>
<td>80 σ</td>
</tr>
<tr>
<td>300</td>
<td>23 σ</td>
<td>22 σ</td>
<td>70 σ</td>
</tr>
</tbody>
</table>

Buszello et al. SN-ATLAS-2003-025

F. Gianotti, Bruno Touschek school, Frascati, 15/5/2006
Motivations:

- stabilizes m_H
- predicts light Higgs (in agreement with EW data)
- enable gauge-coupling unification
- provides a dark matter candidate, etc.
<table>
<thead>
<tr>
<th>e^+e^- colliders</th>
<th>versus</th>
<th>hadron colliders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparticles produced ~ democratically</td>
<td>(\tilde{q}\tilde{g}, \tilde{g}\tilde{g}) dominates</td>
<td></td>
</tr>
</tbody>
</table>
| | **\(\tilde{q}\tilde{g}\) \(\approx 100\) pb** | \(q\rightarrow g\rightarrow \tilde{q}\rightarrow\tilde{\chi}^0\) \(m=150\) GeV Tevatron
| | **\(\tilde{e}\tilde{e}\) \(\approx 5\) fb** |
| e^+ \(\gamma, Z^*\) \(\tilde{\tau}^+, \tilde{\tau}^-, \tilde{\chi}^+, \tilde{\chi}^-\) \(\tilde{\chi}_i^0\) |
| e^- \(\tilde{\tau}^-, \tilde{\chi}^-, \tilde{\chi}_i^0\) |
| **Direct decays to LSP dominate:** | **~ all decay modes** |
| e.g. \(\tilde{q}\rightarrow q\tilde{\chi}_1^0\) \(\tilde{\tau}\rightarrow l\tilde{\chi}_1^0\) \(\chi^* \rightarrow W^*\chi_1^0\) |
| \(\rightarrow\) main topology is 2 acoplanar objects + missing E | **\(\tilde{q}, \tilde{g} \) heavy \(\rightarrow\) cascade decays important**
| e.g. \(\tilde{g}\rightarrow \tilde{q}q\rightarrow qq\tilde{\chi}_2^0\rightarrow qqZ\tilde{\chi}_1^0\) |
| **Moderate backgrounds** \((\gamma\gamma \rightarrow ff, WW, ZZ)\) | **Huge backgrounds** \((QCD, W/Z+\text{jets})\) |
| **Sensitive to:** | **Sensitive to:** |
| ~ all kinematically accessible \(\tilde{p}\) | ~\(\tilde{q}, \tilde{g}\) (high \(\sigma\), heavy, clear signature)
| ~ all decay modes | and \(\chi_1^+ \chi_2^0 \rightarrow 3l\) (clean signature)
| \(\Delta m = m(\tilde{p}) - m(\tilde{\chi}_1^0)\approx \text{GeV} \) (small visible E) | ~\(\Delta m \gg 10\) GeV (large visible E needed) |
| **Mass reach** \(m \leq \sqrt{s}/2\) for ~ any sparticle
| over most accessible parameter space | **High mass reach for \(\tilde{q}, \tilde{g}\) but holes** in parameter space \(\rightarrow\) ~ no absolute limit |
| **LEP2 :** \(m > 100\) GeV for \(\chi^\pm\), squarks, sleptons | **Tevatron today:** \(\tilde{q}, \tilde{g}\) excluded up to
| \(m \sim 330\) GeV (Run 2 reach: ~ 400 GeV) |

F. Gianotti, Bruno Touschek school, Frascati, 15/5/2006
Discovery reach vs time with jets + E_T^{miss} signature (most model-independent)

ATLAS
5σ discovery curves

- Band indicates factor ± 2 variation in background estimate

- ~1 day @ 10^{33}: up to 1.5 TeV
- ~100 days: up to 2.3 TeV
- ~"10 days": up to 2 TeV
- Ultimate (300 fb$^{-1}$): ~2.5-3 TeV

But: it will take a lot of time to understand the detectors and the backgrounds …
Main backgrounds to SUSY searches in jets + E_{T}^{miss} topology (one of the most “dirty” signatures …):

• $W/Z + \text{jets}$ with $Z \rightarrow \nu\nu$, $W \rightarrow \tau\nu$; $t\bar{t}$; etc.
• QCD multijet events with fake E_{T}^{miss} from jet mis-measurements (calorimeter resolution and non-compensation, cracks, …)
• cosmics, beam-halo, detector problems overlapped with high-p_{T} triggers, …

1) “Clean-up” procedure:
• at least 2-3 jets with $p_{T}>80-100$ GeV, $E_{T}^{\text{miss}} > 80-100$ GeV (for masses at overlap with Tevatron reach, higher otherwise)
• good event vertex
• no jets in detector cracks
• p_{T}^{miss} vector not pointing along or opposite to a jet in transverse plane
2) Estimate backgrounds using *as much as possible data (control samples)* and *MC*

<table>
<thead>
<tr>
<th>Background process (examples)</th>
<th>Control samples (examples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z \rightarrow \nu \nu + \text{jets})</td>
<td>(Z \rightarrow ee, \mu \mu + \text{jets})</td>
</tr>
<tr>
<td>(W \rightarrow \tau \nu + \text{jets})</td>
<td>(W \rightarrow e\bar{\nu}, \mu \bar{\nu} + \text{jets})</td>
</tr>
<tr>
<td>(t\bar{t} \rightarrow b\bar{\nu} b\bar{\nu})</td>
<td>(t\bar{t} \rightarrow b\nu b\nu)</td>
</tr>
<tr>
<td>QCD multijets</td>
<td>lower (E_T) sample</td>
</tr>
</tbody>
</table>

Additional handles from changing (loosening ..) cuts, varying the number of leptons, etc., which will change the background composition.

Normalization point

Normalise MC to data at low \(E_T^{\text{miss}}\) and use it to predict background at high \(E_T^{\text{miss}}\) in “signal” region.

Understanding \(E_T^{\text{miss}}\) spectrum (and tails from instrumental effects) is one of most crucial and difficult experimental issues for SUSY searches at hadron colliders.

![Graph](image)
Hermetic calorimetry coverage: \(|\eta| < 5\), minimal cracks and dead material
→ minimise fake \(E_T^{\text{miss}}\) from lost or badly measured jets

ATLAS: full simulation of \(Z + \text{jet(s)}\) events, with \(Z \rightarrow \mu\mu\) and \(p_T(Z) > 200\) GeV

- - - - - reconstructed \(E_T^{\text{miss}}\) spectrum
- - - - - \(E_T^{\text{miss}}\) spectrum if leading jet is undetected

Events with \(E_T^{\text{miss}} > 50\) GeV

“crack” barrel/extended barrel Tilecal

Particles parallel to Tilecal scintillating tiles

2 events with \(E_T^{\text{miss}} > 200\) GeV contain a high-\(p_T\) neutrino
If SUSY is there, to progress further and constrain the underlying theory we will need to perform precision measurements (e.g. of sparticle masses)

Mass peaks cannot be directly reconstructed (χ^0_1 undetectable)
→ measure invariant mass spectra (end-points, edges,..) of visible particles
→ deduce constraints on combinations of sparticle masses

Ex. : LHC “Point 5” : m$_0$ = 100 GeV, m$_{1/2}$ = 300 GeV, A$_0$ = 300 GeV, tanβ = 2, \(\mu > 0\)

m(\(\tilde{g}\)) \sim 700 GeV
m(\(\tilde{q}\)) \sim 800 GeV
m(\(\chi^0_1\)) \sim 120 GeV
Example of a typical chain:

\[\tilde{q}_L \rightarrow q \chi^0_2 \rightarrow \tilde{\tau}_R \chi^0_1 \]

- \(m(\tilde{q}_L) \): spectrum end-point: 109 GeV, exp. precision ~0.3%
- \(m(\tilde{q}_L \chi^0_2 \tilde{\tau}_R \chi^0_1) = 690, 232, 157, 121 \text{ GeV} \)
- \(m(\tilde{l}^\pm j) \): spectrum end-point: 479 GeV, exp. precision ~1%
- \(m(\tilde{l}^\pm j) \): spectrum end-point: 552 GeV, exp. precision ~1%

ATLAS
100 fb\(^{-1}\)
LHC Point 5
Putting all constraints together:

\[
\begin{align*}
\widetilde{q}_L \rightarrow q \chi_0^0, \\
\widetilde{q}_L \rightarrow h \chi_0^0, \\
\widetilde{q}_L \rightarrow t_R \chi_0^0, \\
\widetilde{q}_L \rightarrow b b \chi_0^0
\end{align*}
\]

<table>
<thead>
<tr>
<th>Sparticle mass</th>
<th>Expected precision 100 fb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>squark left</td>
<td>± 3%</td>
</tr>
<tr>
<td>\chi_0^0</td>
<td>± 6%</td>
</tr>
<tr>
<td>slepton mass</td>
<td>± 9%</td>
</tr>
<tr>
<td>\chi_0^1</td>
<td>± 12%</td>
</tr>
</tbody>
</table>

“Model-independent”, pure kinematics

Sparticles directly observable at Point 5:

\[\widetilde{q}_L, \widetilde{q}_R, \widetilde{g}, \widetilde{t}_1, \widetilde{T}_R, \widetilde{T}_L, h, \chi_2^0\]

Note: can measure much more than masses: cross-sections, maybe some couplings and branching ratios, etc.
Then, assuming a model and from fit of model to all experimental measurements derive:

- sparticle masses with higher accuracy
- fundamental parameters of theory to 1-30%
- dark matter (χ^0_1) relic density and $\sigma (\chi^0_1 - \text{nucleon})$

Demonstrated so far in mSUGRA (5 param.) and in more general MSSM (14 param.)

As with SM at SLD, LEP, Tevatron

ATLAS, 300 fb$^{-1}$

$mSUGRA$, Point "SPS1A"

$\delta (\Omega_{\chi} h^2) \approx 3\%$

Direct Dark Matter searches

Zepelin, CDMS, Edelweiss

— present limit

--- projected

General strategy toward understanding the underlying theory
(SUSY as an example …)

Discovery phase: inclusive searches ... as model-independent as possible

First characterization of model: from general features: Large \(E_T \text{miss} \)? Many leptons? Exotic signatures (heavy stable charged particles, many \(\gamma \)'s, etc.)? Excess of b-jets or \(\tau \)'s? ...

Interpretation phase:
• reconstruct/look for semi-inclusive topologies, eg:
 -- \(h \to bb \) peaks (can be abundantly produced in sparticle decays)
 -- di-lepton edges
 -- Higgs sector: e.g. \(A/H \to \mu\mu, \tau\tau \) ⇒ indication about \(\tan\beta \), measure masses
 -- \(tt \) pairs and their spectra ⇒ stop or sbottom production, gluino ⇒ stop-top
• determine (combinations of) masses from kinematic measurements (e.g. edges ...)
• measure observables sensitive to parameters of theory (e.g. mass hierarchy)

At each step narrow landscape of possible models and get guidance to go on:
• lot of information from LHC data (masses, cross-sections, topologies, etc.)
• consistency with other data (astrophysics, rare decays, etc.)
• joint effort theorists/experimentalists will be crucial
Combining collider data with other “constraints”…..

Disfavoured by BR \(b \rightarrow s\gamma \)
from CLEO, BELLE
BR \(b \rightarrow s\gamma = (3.2 \pm 0.5) \times 10^{-4} \)
used here

Favoured by \(g_\mu - 2 \) (E821)
assuming that
\(\delta \alpha_\mu = (43 \pm 16) \times 10^{-10} \) (OLD !!)
is from SUSY (\(\pm 2 \sigma \) band)

Favoured by cosmology
assuming 0.1 \(\leq \Omega \chi h^2 \leq 0.3 \)
Complementarity between LHC and future e^+e^- Colliders

In general:

- LHC most powerful for \tilde{q} and \tilde{g} (strongly interacting) but can miss some EW sparticles (gauginos, sleptons) and heavy Higgs bosons.

- Depending on \sqrt{s}, LC should cover part/all EW spectrum (usually lighter than squarks/gluinos) → should fill holes in LHC spectrum. Squarks could also be accessible if \sqrt{s} large enough.

LC can perform precise measurements of masses (to ~ 0.1%), couplings, field content of sparticles with mass up to ~ $\sqrt{s}/2$, disentangle squark flavour, etc.
What the LHC can do and cannot do

In general the LHC can (examples ...):
 • discover SUSY up to $m(\tilde{q}, \tilde{g}) \sim 2.5$ TeV
 • measure lightest Higgs h mass to ~ 0.1
 • derive sparticle masses (typically $\tilde{q}, \tilde{g}, \chi^0_2$) from kinematic measurements
 • constrain underlying theory by fitting a model to the data

More difficult or impossible (examples ...):
 • disentangle squarks of first two generations
 • observe / measure sleptons if $m > 350$ GeV
 • measure full gaugino spectrum
 • measure sparticle spin-parity and all couplings
 • constrain underlying theory in model-indep. way

\rightarrow complementarity with LC

Ultimate goal: from precise measurements of e.g. gaugino masses at the TeV scale reconstruct high-E theory
Extra-dimensions
Additional dimensions
→ $M_{\text{gravity}} \sim M_{\text{EW}}$
New states at TeV scale

Little Higgs
SM embedded in larger gauge group
New particles at TeV scale, stable m_H

Technicolour
New strong interactions break EW symmetry
→ Higgs (elementary scalar) removed
New particles at TeV scale

Split SUSY
Accept fine-tuning of m_H
(and of cosm. constant)
by anthropic arguments
Part of SUSY spectrum at TeV scale
(for couplings unification and dark matter)

Strong motivations for a machine
able to explore the TeV-scale

LHC
Search for Extra-dimensions

Basic idea: solve hierarchy problem $\frac{M_{EW}}{M_{Planck}} \sim 10^{-17}$ by lowering gravity scale from $M_{Planck} \sim 10^{19}$ GeV to $M_D \sim 1$ TeV Possible if gravity propagates in $4 + \delta$ dimensions.
If gravity propagates in $4 + \delta$ dimensions, a gravity scale $M_D \approx 1$ TeV is possible.

If $M_D \approx 1$ TeV:

$\delta = 1 \quad R \approx 10^{13}$ m \rightarrow excluded by macroscopic gravity

$\delta = 2 \quad R \approx 0.7$ mm \rightarrow limit of small-scale gravity experiments

$\delta = 7 \quad R \approx 1$ Fm

Extra-dimensions are compactified over $R < \text{mm}$.
• **Gravitons in Extra-dimensions** get quantized mass:

\[m_k \sim \frac{k}{R} \quad k = 1, \ldots, \infty \]

\[\Delta m \sim \frac{1}{R} \quad \text{e.g. } \Delta m \approx 400 \text{ eV} \quad \delta = 3 \]

\[\begin{array}{c}
\text{continuous tower of massive gravitons} \\
(\text{Kaluza-Klein excitations})
\end{array} \]

\[\mathcal{O} \left(\frac{f}{M_{Pl}} \right)^2 N_{kk} \approx \frac{1}{M_{Pl}^2} \left(\frac{\sqrt{s}}{\Delta m} \right)^\delta \approx \frac{1}{M_{Pl}^2} \sqrt{s} \delta R^\delta \approx \frac{\sqrt{s}^\delta}{M_D^{\delta+2}} \]

Due to the large number of \(G_{kk} \), the coupling SM particles - Gravitons becomes of EW strength

• Only one scale in particle physics: EW scale
• Can test geometry of universe and quantum gravity in the lab
Look for a continuum of Graviton KK states:

\[q \rightarrow \text{topology is jet(s) + missing } E_T \]

Cross-section:\[\sigma \approx \frac{1}{M_D^{\delta+2}} \]

- \(M_D \) = gravity scale
- \(\delta \) = number of extra-dimensions

To characterize the model need to measure \(M_D \) and \(\delta \)

Measurement of cross-section gives ambiguous results: e.g. \(\delta=2, M_D=5 \text{ TeV} \)
very similar to \(\delta=4, M_D=4 \text{ TeV} \)

Solution may be to run at different \(\sqrt{s} \)s:

Discriminating between models:
- SUSY: multijets plus \(E_T^{\text{miss}} \) (+ leptons, ...)
- ADD: monojet plus \(E_T^{\text{miss}} \)

Good discrimination between various solutions possible with expected <5% accuracy on \(\sigma(10)/\sigma(14) \) for 50 fb\(^{-1}\)
$G \rightarrow e^+e^-$ resonance with $m \sim 1$ TeV

The easiest object to discover at the LHC ...

BR ($G \rightarrow ee \approx 2\%$), $c = 0.01$ (small/conservative coupling to SM particles)

<table>
<thead>
<tr>
<th>Mass (TeV)</th>
<th>Events for 10 fb$^{-1}$ (after all cuts)</th>
<th>$\int L , dt$ for discovery (≥ 10 observed events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>~ 80</td>
<td>~ 1.2 fb$^{-1}$</td>
</tr>
<tr>
<td>1.1</td>
<td>~ 25</td>
<td>~ 4 fb$^{-1}$</td>
</tr>
<tr>
<td>1.25</td>
<td>~ 13</td>
<td>~ 8 fb$^{-1}$</td>
</tr>
</tbody>
</table>

• large enough signal for discovery with ~ 1 fb$^{-1}$ for $m \rightarrow 1$ TeV
• dominant Drell-Yan background small
• signal is mass peak above background

C. Collard

Randall Sundrum Graviton

$G \rightarrow ee$

CMS: Full Simulation and reconstruction

$c=0.01$ and $\int L = 10$ fb$^{-1}$

One experiment

Graviton ($s=2$) or Z' ($s=1$)?

→ look at e^\pm angular distributions

ATLAS, 100 fb$^{-1}$, $m_G=1.5$ TeV

"data"
Mini black holes production at LHC?

- Schwarzschild radius (i.e. within which nothing escapes gravitational force):

\[
\begin{align*}
\text{4-dim., } M_{\text{gravity}} &= M_{\text{Planck}} : \\
R_S &\sim \frac{2}{M_{\text{Pl}}^2} \frac{M_{\text{BH}}}{c^2} \\
\text{4+δ-dim., } M_{\text{gravity}} &= M_D \sim \text{TeV} : \\
R_S &\sim \frac{1}{M_D} \left(\frac{M_{\text{BH}}}{M_D} \right)^{\frac{1}{δ+1}}
\end{align*}
\]

Since \(M_D \) is low, tiny black holes of \(M_{\text{BH}} \sim \text{TeV} \) can be produced if partons \(ij \) with \(\sqrt{s_{ij}} = M_{\text{BH}} \) pass at a distance smaller than \(R_S \).

- Large partonic cross-section: \(\sigma(ij \rightarrow \text{BH}) \sim \pi R_S^2 \)

 e.g. For \(M_D \sim 3 \text{ TeV} \) and \(δ = 4 \), \(\sigma(pp \rightarrow \text{BH}) \sim 100 \text{ fb} \) → 1000 events in 1 year at low \(L \).

- Black holes decay immediately (\(τ \sim 10^{-26} \text{ s} \)) by Hawking radiation (democratic evaporation):
 - large multiplicity
 - small missing \(E \)
 - jets/leptons \(\sim 5 \)

 \[\text{expected signature (quite spectacular ...)} \]
A black hole event with $M_{BH} \sim 8$ TeV in ATLAS

From preliminary studies: reach is $M_{D} \sim 6$ TeV for any δ in one year at low luminosity.

By testing Hawking formula \rightarrow proof that it is BH $+$ measurement of M_{D}, δ

$$\log T_{H} = - \frac{1}{\delta + 1} \log M_{BH} + f(M_{D}, \delta)$$

precise measurements of M_{BH} and T_{H} needed (T_{H} from lepton and photon spectra)
Construction quality

Thickness of Pb plates must be uniform to 0.5% (~10 μm)

End-cap: 1536 plates

< > ~ 2.2 mm
σ ≈ 9 μm

Test-beam measurements

Scan of a barrel module (Δφ×Δη=0.4×1.4) with high-E electrons

After correction:
n.m.s. ≈ 0.57%
over ~ 500 spots
3 **Cosmics runs:**

Measured cosmic μ rate in ATLAS pit: few Hz
\rightarrow $\sim 10^6$ events in \sim 3 months of cosmics runs beginning 2007
\rightarrow enough for initial detector shake-down
\rightarrow ECAL: check calibration vs η to 0.5%

4 **First collisions:** calibration with $Z \rightarrow ee$ events (rate \approx 1 Hz at 10^{33})

Use Z-mass constraint to correct long-range non-uniformities (module-to-module variations, effect of upstream material, etc.)
$\sim 10^5 Z \rightarrow ee$ events (few days data taking at 10^{33}) enough to achieve constant term $c \leq 0.7$

Nevertheless, let's consider the worst (unrealistic ?) scenario: no corrections applied

ECAL non-uniformity at construction level, i.e.:
-- no test-beam corrections
-- no calibration with $Z \rightarrow ee$

$H \rightarrow \gamma\gamma$ significance $m_H \sim 115$ GeV degraded by ~ 25
\rightarrow need 50% more L for discovery
2 The first year(s) of data taking

First collisions (Summer 2007): $L \sim 5 \times 10^{28}$
Plans to reach $L \sim 10^{33}$ in/before 2009
Hope to collect few fb$^{-1}$ per experiment by end 2008

<table>
<thead>
<tr>
<th>Channels (examples …)</th>
<th>Events to tape for 1 fb$^{-1}$ (per expt: ATLAS, CMS)</th>
<th>Total statistics from previous Colliders</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \rightarrow \mu \nu$</td>
<td>7×10^6</td>
<td>$\sim 10^4$ LEP, $\sim 10^6$ Tevatron</td>
</tr>
<tr>
<td>$Z \rightarrow \mu \mu$</td>
<td>$\sim 10^6$</td>
<td>$\sim 10^6$ LEP, $\sim 10^5$ Tevatron</td>
</tr>
<tr>
<td>$tt \rightarrow W b W b \rightarrow \mu \nu +X$</td>
<td>$\sim 10^5$</td>
<td>$\sim 10^4$ Tevatron</td>
</tr>
<tr>
<td>$\tilde{g}\tilde{g}$ m = 1 TeV</td>
<td>$10^2 - 10^3$</td>
<td>____</td>
</tr>
</tbody>
</table>

With these data:

- Understand and calibrate detectors in situ using well-known physics samples

 e.g. - $Z \rightarrow ee, \mu \mu$ tracker, ECAL, Muon chambers calibration and alignment, etc.
 - $tt \rightarrow b\nu bjj$ jet scale from $W \rightarrow jj$, b-tag performance, etc.

- Measure SM physics at $\sqrt{s} = 14$ TeV: W, Z, tt, QCD jets … (omnipresent backgrounds to New Physics)

→ prepare the road to discovery …… it will take a lot of time …
SUSY Higgs sector: \(h, H, A, H^\pm \)

\[m_h < 135 \text{ GeV}, \quad m_A = m_H = m_{H^\pm} \]

Assuming decays to SM particles only

Here only \(h \) (SM-like) observable at LHC, unless \(A, H, H^\pm \rightarrow \text{SUSY} \)

\(\rightarrow \text{LHC may miss part of the MSSM Higgs spectrum} \)

Observation of full spectrum may require high-E (\(\sqrt{s} \approx 2 \text{ TeV} \)) Lepton Collider
Most of MSSM Higgs plane already covered after 1 year at $L = 10^{33}$...

Large variety of channels and signatures accessible
Extended gauge groups: \(Z' \rightarrow l^+l^- \)

- Reach in 1 year at \(10^{34} \): 4-5 TeV
- Discriminating between models possible up to \(m \sim 2.5 \) TeV by measuring:
 -- \(\sigma \times \Gamma \) of resonance
 -- lepton F-B asymmetry
 -- \(Z' \) rapidity
Little Higgs models

Alternative approach to the hierarchy problem predicting heavy top T (EW singlet), new gauge bosons W_H, Z_H, A_H and Higgs triplet $\Phi^0, \Phi^+, \Phi^{++}$.

Observation of $T \rightarrow Zt, Wb$ discriminates from 4th family quarks.
Observation of $V_H \rightarrow Vh$ discriminates from W', Z'.
Other scenarios

Leptoquarks: \(lq lq \rightarrow lj lj \)

Large number of scenarios studied:
⇒ demonstrated detector sensitivity to many signatures
⇒ robustness, ability to cope with unexpected scenarios
⇒ LHC direct discovery reach up to \(m \approx 5-6 \text{ TeV} \)
LHC and high-energy cosmic rays

$\sqrt{s} = 14$ TeV corresponds to $E \sim 100$ PeV fixed target proton beam

LHC studies most relevant to HECR:
- most energetic particles from the collisions
- pp (and pA, AA) cross-sections
both require detection in the forward region

Charged particle multiplicity and energy in pp inelastic events at $\sqrt{s} = 14$ TeV

F. Gianotti, Bruno Touschek school, Frascati, 15/5/2006
Measurement of $\sigma_{\text{tot}}(pp)$

Curves are $\sim (\log s)^\gamma$

Goal of TOTEM:
$\sim 1\%$ precision

TOTEM: 3 stations of detectors ("Roman Pots" RP1, RP2, RP3) at both sides of IP5 (integrated with beam pipe) to measure scattered proton in elastic interactions down to $\theta_{\text{scat}} \approx 20\, \mu\text{rad}$
With the first collision data ($1 \rightarrow 100 \text{ pb}^{-1}$?)

- understand detector performance in situ ↔ physics (the two are correlated!)
- measure particle multiplicity in minimum bias (a few hours of data taking ...)
- measure QCD jets ($>10^3$ events with $E_T(j) > 1$ TeV with 100 pb$^{-1}$) and their underlying event
- measure W,Z cross-sections: to 15% with <10 pb$^{-1}$ and 10% with 100 pb$^{-1}$?
- observe a top signal with ~ 30 pb$^{-1}$
- measure $t\bar{t}$ cross-section to 20% and $m(\text{top})$ to 7-10 GeV with 100 pb$^{-1}$?
- improve knowledge of PDF (low-x gluons!) with W/Z: with O(100) pb$^{-1}$?
- first tuning of MC (minimum bias, underlying event, $t\bar{t}$, W/Z+jets, QCD jets,...)

And, more ambitiously:
- discover SUSY up to squark and gluino masses of ~ 1.3 TeV?
- discover a Z' up to masses of ~ 1.3 TeV?
- surprises?