XRootD/XTNetFile
a robust and fault tolerant
extension of RootD/TNetFile

Alvise Dorigo, Fabrizio Furano
Venezia & Padova University — INFN Padova




Main goals

* An extension of the TnetFile/RootD system

— Fault tolerance
— High performance

— No resource waste

* Possibility of effective use of the available computing
power

— In small to large scale sites

— Nearly linear scaling

— Possibility to distribute huge data repositories

— Over many load balanced servers




xrootd

* A high tech scalable replacement for rootd

* Plugin architecture — can revert to rootd protocol
* Security — virtually any security protocol

* Multithreaded code — sticky sockets

* Connection multiplexing

* Load balancing, based on

— redirection mechanism

— communication between servers and load balancers

e Extendable protocol
* Mass storage integration

* [/O segmenting, caching, server side read-ahead




XrootD internals

Protocol Manager

Protocol L ayer

Filesystern Logical Layer

Filesystem Physical Layer

Filesystemn | mplementation

(included in
distribution)




XrootD load balancing

!
O
T

Dynamic

Selection




Example: SLAC configuration

client machines




A client for Xrootd

* Many xrootd's features must have a counterpart
in its client




XTNetFile 1

e ROOT class used to communicate with a rootd or xrootd
server

— Supports xrootd protocol, with connection multiplexing
(several clients mapped on a single physical conn per server)
and security

— Can detect the server kind (rootd, xrootd) and revert back to
rootd protocol if needed. Transparently.

— Supports the client side of the load balancing mechanism
(redirections)

— Error recovery, as defined in the Xrootd protocol
documentation

* Supports redirections 1n data tranferring too




XTNetFile 11

* XTNetFile extends TNetFile, the original rootd
client

— Server handshake: transparently detects the server type

— Redirection mechanism, used for both load balancing
and error recovery

— Main purposes

> shrink near to 0 the number of jobs/processes unable to
proceed due to transient communication troubles

> Allow many clients to share resources through load
balanced servers




Backward compatibility of client and server

. Client-Side Compatibility
| Application
AXTNefFile |e-ui-

' Server-Side Compatibility

Application




XTNetFile / XTNetAdmin




Startup Behaviour

* On startup, XTNetFile can be given a multiple URL 1n the
constructor:

root://hostl[:portl][,host2][:port2]]...[,hostN:portN]/path/file

— DNS aliases are supported. A hostname can throw to a number of

servers to choose (random w/o reinsertion); default TCP port 1094
(like rootd)

— Then 1t tries to connect for a number of times (default 1s 120 with 10
secs delay and 30 secs timeout) to one of the resulting servers
(random w/o reinsertion)

e After connection, a handshake tells what to do:
— xrootd protocol or forward calls to TNetFile

e Strict timeout rules are applied to each attempt. Clients
have never to lockup.




Error recovery

— Strict timeout rules are applied to all read/write

* Everything is parametrizable via .rootrc (reading values for all parameters via the
ROOQOT gEnv static object)

— A read/write error 1s treated as a redirection

* To the first encountered load balancer (if any)
* To the same server (rebouncing) if no load balancer

* Each reconnection attempt is counted as a redirection

— XTNetFile gives up when a max redirection count is reached (default is
256 per hour)
* A failing command is retried a number of times (default is 10 with 10 secs delay)

* (Can refresh the load balancer file mapping if a data server does not finds a file it
was supposed to have

e Survives to redirections to offline servers or several load balancers




XTNetFile Architecture

XTNetHle

ROOTinterface

XTUrl

XTNetConn

|

Protocol
High levelcomm

—

Interfaces
XINetAdmin

ROOTinterface

Behaviour

Logical connections
Conn

Manager

Physcal connections

Communication
Garbage

collector

~—

TXSoc ket TSOcket




Sync vs Async

* Some enhancements in the xrootd protocol ask
for an asynchronous structure

— Unsolicited responses

* ¢.g. xrootd admin interface, safe server shutdown

* A closing server can redirect all the clients (even i1dle) to
another one

e A server can ask for the clients to wait...

— Can be useful for multithreaded client applications
(performance)




Dev status

— XTNetFile 1s in production for BaBar

e Large scale processing needs close to perfection
communication primitives

— Robustness is satisfying, users can kill servers, restart, etc.
Without negative consequences

- If needed, a complete integration inside ROOT is possible
(some POSIX stuff, details on socket polls)

— Multithreaded async architecture 1s there

e Parametric choice (a gEnv param can turn ON/OFF the async
behaviour), interface and primitives are the same

* Will be production tested in parallel with the server's new
features

— Security will be deployed shortly

e In parallel with the server plugins (and the actual needs)




Work in progress

e Client side Read-ahead

* ROOT analysis jobs (in BaBar) tend to request very small
packets

— Disks and comm latency limit max performances

— Reading ahead can boost performances and lower server side
load, but only if it's convenient

* Client side Caching

* The typical analysis jobs (in BaBar) do not process data in
a strictly sequential way

— Some kind of caching (of read-ahead blocks) can help even more

* Measurements and developing are in progress

e Goal: an auto—confi_guring read-ahead & caching mech.




