Status of the CALICE ECAL

CALICE collaboration

• Introduction
• The proposed calorimeter
• The ECAL prototype
• R&D for next generation
• Schedule

• Silicon wafer
• PCB
• VFE Chip
• Gluing
• DAQ
• First measurements

• New chip
• Thermal studies
• AC coupling (silicon)
• PCB
It is not R&D in the back yard!!
Start from physics
See what design/technique could fit
List the R&D to do to validate the choice
Study potential performance with simul.

Optimise EFLOW performances lead to optimize close showers separability so, like digital camera

\[\textbf{\textit{number of pixel !!!}}\]
Ultra granular/segmented – stable – compact
example ECAL, a sampling tungsten – silicon
example HCAL, a sampling Fe – RPC’s, gem, scint. tiles

Well adapted for the physics programme at TeV LC
i.e. to fully reconstruct multi-jets events
to have a good channel id. in the τ decays

Perspective view of the ECAL

$e^+e^- \rightarrow ZH, \ Z \rightarrow \mu\mu$ at $\sqrt{s}=500$ GeV

GEOMETRY*: No way to escape

[*] The calorimeter 8-fold way of Henri Videau
- No large dead zone
- All modules are identical
- Detector slab tested before mounting

Based on mechanical study,

The full scale detector can be realised with the same pattern:

“Tungsten wrapped in CFi”
The ECAL prototype

Note the density

Structure 1

Structure 2

Structure 3

Metal inserts (interface)

Detector slab

ACTIVE ZONE (18×18 cm²)

360 mm

200 mm

360 mm

Silicon wafers with 6×6 pads (10×10 mm²)

3 structures W-CFi (1,2,3 x1.4 mm)

15 « detector slabs »

Dimension 200x360x360 mm

9720 channels in the proto.
Prototypes for the test beam

Simulation GEANT4

10 GeV pion
Detector slab

- Shielding
- Tungsten
- Carbon Fiber
- Silicon wafer
- Front End electronics zone
- PCB
- SCSI connector
- Carbone Fiber
- tungsten
- 8.5 mm
Silicon Wafers for the prototype

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>4” High resistive wafer</td>
<td>5 kΩ/cm</td>
</tr>
<tr>
<td>Thickness</td>
<td>525 microns ± 3 %</td>
</tr>
<tr>
<td>Tile side</td>
<td>62.0 + 0.0 - 0.1 mm</td>
</tr>
<tr>
<td>Guard ring</td>
<td></td>
</tr>
<tr>
<td>In Silicone ~80 e-h pairs / micron</td>
<td>42000 e−/MIP</td>
</tr>
<tr>
<td>Capacitance</td>
<td>~21 pF</td>
</tr>
<tr>
<td>Leakage current</td>
<td>5 – 15 nA</td>
</tr>
<tr>
<td>Full depletion bias</td>
<td>~150 V</td>
</tr>
<tr>
<td>Nominal operating bias</td>
<td>200 V</td>
</tr>
</tbody>
</table>

One wafer is a Matrix of 6 x 6 pixel of 1 cm².

Important point: manufacturing must be as simple as possible to be near of what could be the real production for full scale detector in order to:

- Keep lower price (a minimum of step during processing)
- Low rate of rejected processed wafer
- Good reliability and large robustness
Silicon Wafers for the prototype

Number of active Wafer needed for the physic prototype: **270**.

- **150** produce by Institute of Nuclear Physics - Moscow State University (M. Merkin, A. Savin, A. Voronin)
 - First test production: February 2003
 - Today: **~130 matrices**

- **150** produce by Institute of Physics, Academy of Sciences of the Czech Republic – Prague (V. Vrba)
 - *First test production: March 2004* (6 good wafers)
 - Full prod for end of May.
Silicon Wafers for the prototype

Institute of Nuclear Physics
Moscow State University

Capacitance: ~25 pF
Leakage current: 1 – 5 nA
Full depletion bias: ~110 V
Nominal operating bias: 200 V

Institute of Physics, Academy of Sciences of the Czech Republic

One process gives results which fit the spec.
PCB for the prototype

Class 6 PCB
design in LAL-Orsay
made in Korea (KNU)

NO WAFER
(MONEY !!!)

Prototype: 60 PCB → middle of July
FLC-PHY3

Chip VFE

- Processed channels: 18 (two possible gains)
- Noise: ENC = 3300 + 30 e⁻ μF
- Linearity: ± 0.2 %
- Dynamic: 600 MIPS @ Cf = 1.6 μF

VFE electronics

- Overall noise, including DAQ, is around 700 μV (0.14 MIP) ➔ S/B ~ 7σ
- The talk by Julien Fleury (LAL)
Mounting/Gluing the wafers

A automatic device is use to deposit the conductive glue:
EPO-TEK® EE129-4

Gluing and placement (± 0.1 mm) of 270 wafers with 6×6 pads
About 10 000 points of glue.

Using a frame of tungsten wires

X-Y-Z table (400×400×150 mm³) with glue dispensing tool (conductive glue)
Full Prototype DAQ (FPD) based on VME 9U board developed for CMS, modified by UK groups. No zero suppress, 96 VFE/board, 16 bits ADC's, 20 Kbytes/s possible for Test Beam. First test on April 2004 validate the full chain from wafer to DAQ and “tape”.

The talk by Paul Dauncey (Imp. Coll. London)
Single Slab DAQ (SSD)

- for calibration and test on Cosmic Test bench
- work only for a single detector slab
 (24 VFE chips/ 432 silicon pad channels)
- based on NI board (on-shell)
First test with a complete detector slab
First test with a complete detector slab

Si wafer - glue - PCB - VFE – DAQ (Single Slab DAQ) and ground with Al. EMC shield

“internal” signal

1 MIP injected in channel 10 with CALIB chip and measurement made on 100 points

- Theoretic result : 4.97mV
(C_f=1.35pF)
- Measured : 5.05mV

“external” signal

Sr^{90} source → trigger → read 6 channels

Only ONE with signal

\[
\frac{MIP}{\text{Noise}} \approx 7.5
\]

Wafer from Moscow State University
First test with a complete detector slab

Si wafer - glue - PCB - VFE – DAQ (Full proto DAQ)
and ground with Al. EMC shield

Strontium Peak - New Wafers

Sr90 source \(\rightarrow\) trigger \(\rightarrow\) read 1 channel

<table>
<thead>
<tr>
<th>Strontium Peak - New Wafers</th>
<th>hist_event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>2000</td>
</tr>
<tr>
<td>Mean</td>
<td>66.58</td>
</tr>
<tr>
<td>RMS</td>
<td>27.77</td>
</tr>
</tbody>
</table>

Wafer from Academy of Sciences/Prague
Cosmic test bench

Si wafer - glue - PCB - VFE - PCB – DAQ (Single Slab DAQ)
First test with/without cooling (top Al. plate) and VFE inside

SAMCEF Simulation
Thermal dissipation with internal cooling at the border with liquid flow

R&D

Thermal contact

AC coupling elements?

- **Capacitance Si₃N₄ 2µm**
- **Resistance aSi 2µm**
- **Diode contact Chrome 1550A**
- **R and C external contact Chrome 1550A**
- **Diode contact Chrome 1550A**

R and C for AC coupling using thin film technique

- **Capacitance Si₃N₄ 2µm**

PCB

- **Aluminium**
- **Cooling tube**
- **VFE chip**
- **Cooling tube**

Silicon wafer

- **Power line**
- **Command line**
- **Signal out**

LLR

KNU

Thermal contact gluing for electrical contact
Assembling and testing on a cosmic test bench

Intercalibration of the 10K channels and overall debug!

~December 2004 at DESY (Low energy electrons E<6 GeV)
First test beam

2005-2006 at FNAL/IHEP/SLAC ? (electrons/pions/protons up to ~80 GeV)
Test beam with HCAL ...

R&D in ECAL-CALICE

2004-2007
Study of the new geometry \(\uparrow\) with the impact of HE e.m. shower in the chip

- Optimisation of the interaction VFE-chip / cooling
- ADC-DAQ board with low consumption, small dimension, >100 channels/board

\(\uparrow\) VFE inside detector