Front-end electronic for Si-W calorimeter

Sylvie Bondil
Julien Fleury
Christophe de La Taille
Gisèle Martin
Ludovic Raux
Plan

Electronic for a physics prototype

Electronic for a technologic prototype
Front-end Electronic for Physic Prototype
Presentation of the front-end electronic

6 active wafers
Made of 36 silicon PIN diodes
→ 216 channels per board
Each diode is a 1cm² square

12 FLC PHY3 front-end chip
18 channels per chip
13 bit dynamic range

2 calibration switches chips
6 calibration channels per chip
18 diodes per calibration channel

Line buffers
To DAQ part
Differential

14 layers
2.1 mm thick
Made in korea
FLC_PHY3 overview

Multi-gain charge preamp

- 4 bits for gain selection
- Gain from 0.3 to 5 V/pC
- Gain selected offline

Dual shaper & track and hold

- Gain 1 and gain 10
- Work in parallel to select gain \textit{a posteriori}

Global characteristics

- 18 channel input
- 1 mux output
FLC_PHY3 meas. Results - Linearity

Measured input charge swing

Within %o linearity:

\[Q_{\text{IN MAX}} = 6.04 \text{ pC (900 MIP)} @ C_f = 3 \text{pF} \]
\[Q_{\text{IN MAX}} = 3.27 \text{ pC (500 MIP)} @ C_f = 1.6 \text{pF} \]
\[Q_{\text{IN MAX}} = 0.41 \text{ pC (60 MIP)} @ C_f = 0.2 \text{pF} \]

Measured Linearity

A few %o on every gain

Linearity curves (sweeping C_f / G1)

Residuals (C_f=1.6pF / G1)
FLC_PHY3 meas. Results - Transient

Peaking time uniformity
189ns ± 1% RMS @G1
174ns ± 1% RMS @G10

Gain uniformity @ Cf=1.6pF
696 mV± 2.5% RMS @G1
6.29 V ± 2.9% RMS@G10

Transient Output vs Gain (G1)

Gain vs feedback capacitance setting
FLC_PHY3 meas. Results - Noise

Noise

- Series: $e_n = 1.6\text{nV}/\sqrt{\text{Hz}}$
- Detector + line capacitance on physic proto: 70 pF
 - ENC: $4000\text{ e}^- (1/10 \text{ MIP})$
 - Output noise: 500 µV RMS

Crosstalk

- Below 1 ‰ with gain 1 shaping
- Below 2 ‰ with gain 10 shaping

ENC measurement and fit (Cf=1.6pF)
Physic prototype front-end status

Status of front-end chip FLC_PHY

PRODUCTION DONE
- 1840 chips are being packaged
- Automated Test Equipment for testing is ready
- Production will be ready for application in May
- Many spares lying around for other applications

Status of front-end PCB

READY FOR PRODUCTION
- Prototype has been debugged
- Functionalities has been checked:
 - With Cosmic bench DAQ (for cross-calibration)
 - With test beam DAQ
- Pre-production has been sent in beginning April
- 65 boards will be produced by the end of June
Front-end electronic for Technologic prototype
Technology choice

Our expectations

- **Perennity**: No way the technology we choose dies before the production … in 20xx…
- **Good digital performance**: It sounds clear that electronic for FLC will be mixed
- **Good analog performance**: It still sounds clear that electronic for FLC will be mixed
- And of course, as cheap as possible

Our choice: AMS 0.35um CMOS (C35b4) and AMS 0.35 SiGe BiCMOS (S35b4)

- **Perennity**: used by car industry and RF industry who need « normal » voltage supply (3.3V)
- **Good digital performance**: Transistors are small enough to go as fast as we need
- **Good analog performance**: Transistors are big enough to allow a 3.3V supply and let room for analog voltage swing
- And of course, as cheap as possible

Big volume → cheap due to huge industrial customer
Electronic for a technologic prototype

What is in the TDR:
- Charge preamp, tri-gain shaper
- Auto-trigger + Analog memory
- Output: Channel ID, BCID, Energy
- Chips at calorimeter end, 128 channels/chip, 1 W

Diagram:*
- Si Wafer
- PCB
- Front-end
- Length >1m
Alternative solution for electronic

TESLA TDR solution
- Industry cannot build 1m PCB and tendance is going smaller
- High line capacitance → very noisy
- Big number of lines → crosstalk issue and many PCB layers

Alternative solution
- Chip embedded in detector
- 1 chip per wafer (36-channel chip)
- Low power issue
- Cooling issues
- Temperature distribution in module?
- Fake signal due to e.m. showers in chip?
Digital memory

Power control

Channel Select

Ch.1

Ch.2

Ch.36

ADC

Energy

Gain

BCID

Channel

Out
Charge preamp. for a techno prototype

Expectations:
- Low noise: \(\sim 1 \text{nV/sqrt(Hz)} \)
- Low power: below 1mW
- Settling time: around 2us

Technology
AMS 0.35 CMOS

Submission
April, 19th 2004
Shapers for a techno prototype

Op. amp. shaper
- Conservative version
- Peaking time: 200ns
- Low power: below 400uW
- Gain 1 & 10

Capacom shaper
- Peaking time: variable from 100ns to 1us
- Low power: below 400uW
- Variable gain: from 1 to 15
- Auto-hold capability

Current feedback Op. amp. shaper
- Peaking time: 200ns
- Low power: below 400uW
- Gain 1 & 10
- High Gain-Bandwidth Product (>2GHz)

Technology: AMS 0.35 CMOS
Submission: April, 19th 2004
ADC for a techno prototype

DAC C-2C

Vin
Vss
Hold
Vref

A0 A1 A2 A3
C C C C

2C 2C 2C 2C

Threshold

CLK

Latch Comparator

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

SAR Control logic

SAR (successive approximation) ADC

- 10 bits
- C/2C network
- Consumption: 1mW
- Bit rate: ~ 1 MSamples/s

Technology
AMS 0.35 CMOS

Submission
April, 19th 2004
FLC_TECH : a first iteration

FLC_TECH description
- 3 channels
- Multi-gain charge preamplifier
- 2 shaping: gain 1 and gain 10
- 5-depht SCA
- Multiplexed output, auto-trigger and Idle mode

Technology: AMS 0.35 CMOS
Submission: April, 19th 2004

Ch.1

Ch.2

Ch.3

Multiplexing

Output
10 bits low power high speed pipeline ADC

Performance
- 10 bit
- up to 5MS/s (Clk @ 50 MHz)
- Consumption around 10mW

Status
- First iteration (AMS 0.8 CMOS) is working well
- New iteration (AMS 0.35 CMOS) submitted in April, 19th

Stage N of pipeline ADC block schema

- Amplifier Gain=2
- Comparator
- Bit N out
- To V_{IN} stage N+1

-10 bit ADC →10 stages

10 bit ADC up to 5MS/s (Clk @ 50 MHz) Consumption around 10mW
Conclusion

Physic prototype
- Beginning of production
- On time, so far
- Ready for test beam in dec. 2004
- Good start point for techno proto

Technologic prototype
- Working on embedded chip solution
- Many blocks in design
- Focus on low power issue
 - Pulsed supply
 - Low power design
- Big work to do on ADC

Questions