Neutralino Dark Matter and the Linear Collider

H. Baer, A. Belyaev, T. Krupovnickas (FSU) and X. Tata (Hawaii)

OUTLINE

• mSUGRA model
• Constraints on mSUGRA
 – LEP2
 – relic density: WMAP
 – $b \rightarrow s\gamma$
 – $(g - 2)_{\mu}$
 – χ^2 determination; favored regions of parameter space
• prospects for mSUGRA at a linear e^+e^- collider
• compare LC reach to that of Tevatron and LHC
• parameter determination in the HB/FP region
• non-universal SUGRA model
• favored regions of NU SUGRA parameter space
• prospects for colliders: light 1st/2nd gen. sleptons
• conclusions
Constructing the mSUGRA model

- Begin with Lagrangian of locally supersymmetric gauge theory
- Specify matter and Higgs superfields of MSSM
- Specify SM gauge symmetry
- Specify Kahler function $G = K + \log |f|^2$:
 - superpotential $f = f_{MSSM} + f_{hidden}$
 - flat Kahler metric: $K = \Sigma_i \hat{S}_i^\dagger \hat{S}_i + \hat{h}^\dagger \hat{h}$
- Specify simple gauge kinetic function: $f_{AB} = \delta_{AB} f(\hat{h})$
- Arrange for SUSY breaking in hidden sector
- Calculate supergravity induced soft SUSY breaking terms
- Limit as $M_{Pl} \rightarrow \infty$ with $m_{3/2}$ fixed: global SUSY renormalizable gauge theory with TeV scale soft breaking terms valid at high scale e.g. M_{GUT}
- weak scale model constructed via RGE evolution; EW symmetry broken radiatively
- mSUGRA model parameter space
 - m_0, $m_{1/2}$, A_0, $\tan \beta$, $sign(\mu)$

Chamseddine, Arnowitt and Nath; Barbieri, Ferrara and Savoy; Hall, Lykken and Weinberg; ···
Constraints on mSUGRA model

- Generate SUSY spectrum in mSUGRA parameter space
 - Calculate $\Omega_{\tilde{Z}_1} h^2$ HB, Balazs, Belyaev
 * use Gondolo, Gelmini, Edsjo + CompHEP: Isared program
 * WMAP: $\Omega_{CDM} h^2 = 0.1126 \pm 0.0090$
 - calculate $BF(b \to s\gamma)$ HB, Brhlik, Castano, Tata
 * $BF(b \to s\gamma) = (3.25 \pm 0.54) \times 10^{-4}$ (incl. 12% theory)
 - calculate SUSY contribution to $(g-2)_\mu$ HB, Balazs Ferrandis, Tata
 * $\Delta a_\mu = (31.7 \pm 9.5) \times 10^{-10}$ (Hagiwara et al. e^+e^-; new E821 results)

- from these three, calculate χ^2, plot in mSUGRA parameter space HB, Balazs
 - see also Ellis, Olive, Santoso and Spanos

- allowed DM regions
 - stau co-annihilation (Ellis et al.)
 - HB/FP (Chan, Chattopadyay, Nath; Feng, Matchev, Moroi)
 - A-annihilation funnel (Drees, Nojiri; HB, Brhlik)
 - “bulk” region at low $m_0, m_{1/2}$ disfavored (LEP2, $b \to s\gamma, (g-2)_\mu$)
\(\chi^2 \) for \(\mu > 0 \):

- **green**: low \(\chi^2 / \text{dof} \)
- **yellow**: medium \(\chi^2 / \text{dof} \)
- **red**: high \(\chi^2 / \text{dof} \)
Reach of linear e^+e^- collider:

- LC reach for $\sqrt{s} = 0.5$ and 1 TeV, 100 fb$^{-1}$
Sparticle masses/ cross sections in the HB/FP region:

- In HB/FP, $\mu \to 0$
- $m_{1/2} = 225$ GeV
Sparticle masses/ cross sections in the HB/FP region:

- $m_{1/2} = 900 \text{ GeV}$
Distributions for case study in HB/FP region

- In HB/FP, $\mu \to 0$
Reach of linear e^+e^- collider:

- LC reach for $\sqrt{s} = 0.5$ and 1 TeV, 100 fb$^{-1}$

$mSugra$ with $\tan\beta = 30$, $A_0 = 0$, $\mu > 0$
Reach of linear $e^+ e^-$ collider:

- LC reach for $\sqrt{s} = 0.5$ and 1 TeV, 100 fb$^{-1}$
Reach of linear e^+e^- collider:

- LC reach for $\sqrt{s} = 0.5$ and 1 TeV, 100 fb$^{-1}$

$mSugra$ with $\tan\beta = 52$, $A_0 = 0$, $\mu > 0$
Compare all colliders with WMAP allowed region:

- LC reach for $\sqrt{s} = 0.5$ and 1 TeV, 100 fb$^{-1}$
Compare all colliders with WMAP allowed region:

- LC reach for $\sqrt{s} = 0.5$ and 1 TeV, 100 fb$^{-1}$
Compare all colliders with WMAP allowed region:

- LC reach for $\sqrt{s} = 0.5$ and 1 TeV, 100 fb$^{-1}$
Compare all colliders with WMAP allowed region:

- LC reach for $\sqrt{s} = 0.5$ and 1 TeV, 100 fb$^{-1}$
Determination of fundamental parameters:

- $m(jj)$ vs. $E(jj)$

![Graph showing $m(jj)$ vs. $E(jj)$ and distinguishing between Signal and Background data points.](#)
Determination of fundamental parameters:

- $E(jj)$ bins

![Graphs showing the distribution of events for different m_{jj} values: $m_{jj}=8 \pm 2$ GeV, $m_{jj}=12 \pm 2$ GeV, $m_{jj}=16 \pm 2$ GeV, and $m_{jj}=20 \pm 2$ GeV.](image)
Determination of fundamental parameters:

- $m_{\tilde{Z}_1}$ vs. $m_{\tilde{W}_1}$
Determination of fundamental parameters:

- determine \(\mu \), \(M_2 \), \(\tan \beta \) from \(m_{\tilde{W}_1} \), \(m_{\tilde{Z}_1} \) and \(\sigma(\tilde{W}_1^+\tilde{W}_1^-) \)
Motivation for non-universal SUGRA model

- In general SUGRA models, Kähler metric not flat
- Even if it is a tree level, universality destroyed by rad. corrections

Motivation from experiment

- $BF(b \to s\gamma)$ prefers $m_{\tilde{t}_1} \gtrsim 1$ TeV
- $(g - 2)_{\mu}$ prefers relatively light 2nd ge. sleptons
- must all be consistent with WMAP $\Omega_{\tilde{Z}_1} h^2$

Enlarge parameter space:

- $m_0(1), m_0(3), m_H, m_{1/2}, A_0, \tan \beta, \text{sign}(\mu)$
- we take $m_0(1) \simeq m_0(2)$ to satisfy FCNC constraints
- take $m_H \simeq m_0(3)$ (gives best fit)
- (model realized in Allanach et al. model with twisted moduli sector)
Constraint from Δm_K^*:

- prefer $m_{\tilde{q}}(1) \approx m_{\tilde{q}}(2)$
Constraint from Δm_B:

- allow $m_{\tilde{q}}(1) \simeq m_{\tilde{q}}(2) \neq m_{\tilde{q}}(3)$
Soft term evolution:

- gives $m_{\tilde{q}}(1) \simeq m_{\tilde{q}}(3)$
- also $m_{\tilde{e}} \simeq m_{\tilde{\mu}} \ll m_{\tilde{\tau}}$

\[m_{\tilde{q}}(1,2) = 100\text{GeV}, \quad m_{\tilde{q}}(3) = 1400\text{GeV}, \quad m_{1/2} = 550\text{GeV}, \quad A_0 = 0, \quad \tan \beta = 30, \quad \mu > 0, \quad m_t = 175\text{GeV} \]
χ^2 for NU SUGRA:

- **green**: low χ^2/dof
- **yellow**: medium χ^2/dof
- **red**: high χ^2/dof
<table>
<thead>
<tr>
<th>parameter</th>
<th>value (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>351.1</td>
</tr>
<tr>
<td>M_1</td>
<td>184.2</td>
</tr>
<tr>
<td>μ</td>
<td>516.9</td>
</tr>
<tr>
<td>$m_\tilde{g}$</td>
<td>1067.7</td>
</tr>
<tr>
<td>$m_{\tilde{u}_L}$</td>
<td>939.8</td>
</tr>
<tr>
<td>$m_{\tilde{u}_R}$</td>
<td>910.0</td>
</tr>
<tr>
<td>$m_{\tilde{d}_L}$</td>
<td>943.5</td>
</tr>
<tr>
<td>$m_{\tilde{d}_R}$</td>
<td>907.1</td>
</tr>
<tr>
<td>$m_{\tilde{t}_1}$</td>
<td>1175.1</td>
</tr>
<tr>
<td>$m_{\tilde{t}_2}$</td>
<td>1477.5</td>
</tr>
<tr>
<td>$m_{\tilde{b}_1}$</td>
<td>1460.0</td>
</tr>
<tr>
<td>$m_{\tilde{b}_2}$</td>
<td>1637.1</td>
</tr>
<tr>
<td>$m_{\tilde{e}_L}$</td>
<td>319.3</td>
</tr>
<tr>
<td>$m_{\tilde{e}_R}$</td>
<td>188.2</td>
</tr>
<tr>
<td>$m_{\tilde{\nu}_e}$</td>
<td>295.1</td>
</tr>
<tr>
<td>$m_{\tilde{\tau}_1}$</td>
<td>1386.1</td>
</tr>
<tr>
<td>$m_{\tilde{\tau}_2}$</td>
<td>1475.4</td>
</tr>
<tr>
<td>$m_{\tilde{\nu}_\tau}$</td>
<td>1468.5</td>
</tr>
<tr>
<td>$m_{\tilde{W}_1}$</td>
<td>348.2</td>
</tr>
<tr>
<td>$m_{\tilde{W}_2}$</td>
<td>542.4</td>
</tr>
<tr>
<td>$m_{\tilde{Z}_1}$</td>
<td>179.4</td>
</tr>
<tr>
<td>$m_{\tilde{Z}_2}$</td>
<td>347.2</td>
</tr>
<tr>
<td>m_A</td>
<td>1379.3</td>
</tr>
<tr>
<td>m_h</td>
<td>118.4</td>
</tr>
<tr>
<td>$\Omega_{\tilde{Z}_1} h^2$</td>
<td>0.115</td>
</tr>
<tr>
<td>$BF(b \rightarrow s\gamma)$</td>
<td>3.52×10^{-4}</td>
</tr>
<tr>
<td>Δa_μ</td>
<td>35.1×10^{-10}</td>
</tr>
</tbody>
</table>
Masses and parameters in GeV units for
$m_0(3)$, $m_{1/2}$, A_0, $\tan \beta$, $\text{sign}(\mu) = 1500$ GeV, 450 GeV, 0, 30, +1 in the NMH SUGRA model. We also take $m_H = m_0(3)$ and $m_0(1) = 100$ GeV. The spectrum is obtained using ISAJET v7.69.
Conclusions

- Constraints on mSUGRA (esp. WMAP)
 - “bulk” region dis-favored
 - stau co-annihilation strip
 - HB/FP region at large m_0
 - A-annihilation funnel

- reach of 0.5-1 TeV LC
 - see stau co-ann. region for $\tan \beta \lesssim 30$
 - see HB/FP region beyond LHC capability!
 - see part of A-annihilation funnel (LHC can see \sim all)

- determination of μ, M_2 possible in (lower) HB/FP region

- non-universal SUGRA motivated by $BF(b \to s\gamma)$, $(g - 2)_\mu$

- generically gives light sleptons; accessible to LC!