Geant4 simulation for the FLC detector models with Mokka

Gabriel Musat L.L.R. – Ecole polytechnique
What is Mokka?

- Developed at L.L.R. since the end of 1999.

- Now being developed in an informal collaboration

- Implementation of almost all detector pieces
Mokka
detectors
geometry
database

Mokka
Geant4
Geometry drivers
Geometry Database

Gabriel Musat L.L.R. – Ecole polytechnique
Mokka geometry drivers and databases

Gabriel Musat L.L.R. – Ecole polytechnique
Last Detector Model: “D09M1”
Mokka - the inner tracker devices

- Vertex Detector (VXD)
- Si Intermediate Tracker (SIT)
- Forward Tracking Disks (FTD)
- Beam pipe (Tube)

- All the tracking detectors (VXD, SIT, FTD and TPC) collect hits in a new tracking standard hit format.
- The tube and inner tracking detector dimensions and materials come from the Brahms release 2.05 geometry.

Gabriel Musat L.L.R. – Ecole polytechnique
Mokka - the SET

Gabriel Musat L.L.R. – Ecole polytechnique
Mokka detectors - new mask

Karsten Buesser, January 2003
Mokka - the Prototype

Hcal prototype:
a Hcal module in a cube format (~1 m3), built with RPCs

Ecal prototype:
old prototype already available in Mokka

Gabriel Musat L.L.R. – Ecole polytechnique
Mokka - Common Geometry Access API (F77, C++, C, Java)

- Implements some reconstruction utilities.

Gabriel Musat L.L.R. – Ecole polytechnique
The CGA API and the reconstruction

Example, a 50 GeV π in ECAL:

- the total number of X0 from the entrance point in ECAL is required
Mokka - a (very) Simple Event Display

- Relies on the Geant4 standard visualisation.
- It’s very simple but at least you see something…

Gabriel Musat L.L.R. – Ecole polytechnique
For the collaboration on Mokka development:

* CVS repository on pollin1.in2p3.fr

* simplified of the detector-driver developpement procedure

* documentation included in the standard distribution of Mokka
News from the collaboration on Mokka development

* Aims:
 - improving the models of different detector pieces
 - detailed prototype simulation
 - improving the framework

Gabriel Musat L.L.R. – Ecole polytechnique
Prototype simulation

* a new implementation of TB by Jeremy MCCormick
 - GEM implementation of HCAL

* more detailed Ecal prototype implementation
 in progress
Single layer widths in mm

<table>
<thead>
<tr>
<th>Material</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECal</td>
<td></td>
</tr>
<tr>
<td>Tungsten</td>
<td>2.5</td>
</tr>
<tr>
<td>G10</td>
<td>0.5</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.4</td>
</tr>
<tr>
<td>Copper</td>
<td>1</td>
</tr>
<tr>
<td>Air</td>
<td>0.6</td>
</tr>
<tr>
<td>HCal</td>
<td></td>
</tr>
<tr>
<td>Polystyrene</td>
<td>5</td>
</tr>
<tr>
<td>Steel</td>
<td>25</td>
</tr>
<tr>
<td>Tail Catcher</td>
<td></td>
</tr>
<tr>
<td>Polystyrene</td>
<td>5</td>
</tr>
<tr>
<td>Steel</td>
<td>100</td>
</tr>
</tbody>
</table>

Geometry

Test Beam in Mokka

Jeremy McCormick/Nicadd
Improving the framework (I)

* Mokka output in both LCIO and ASCII format

* Keeping up-to-date with LCIO evolution
Mokka persistency model

Mokka

Persistency Abstraction subsystem

ASCII files

LCIO

SIO files

Gabriel Musat L.L.R. – Ecole polytechnique
Improving the framework (II)

* compression of the six Cal hit indices

\[
\begin{array}{cccccccccccc}
P & S & M & I & J & K & X & Y & Z & E & PID & PDG & \textbf{CELLID} \\
\end{array}
\]

\textbf{FLAG}

in a single word in both ASCII files \textbf{(CELLID)} and LCIO files \textbf{(CellID0 index of SIMCALORIMETERHIT)}

The \textbf{FLAG} is used by the CGA interface to set the right sensitive detector that will provide the cell center coordinates.

In the LCIO files it is stored in the two user bytes of the collection flag.

Gabriel Musat L.L.R. – Ecole polytechnique
Improving the framework (III)

* two new methods of the CGA interface that are used to decode cell center coordinates from the CellID word:

- CGASetSD selects the sensitive detector corresponding to the flag of the LCIO collection or to the FLAG stored at the rightmost in the ASCII hit files

- CGACellIndex uses the CellID0 of the LCIO hit or the CELLID from the ASCII file to calculate the cell center coordinates.
Improving the framework (IV):

* Recent work of Frank Gaede
 - steering-files
 - plugins
Steering files

* alternative to command-line options (still available)

* commands of the form: /Mokka/init

* initializing user-defined variables:
 /Mokka/init/userInitDouble MyCutEnergy 1000 KeV

* activating a G4 physics list:
 /Mokka/init/physicsListName QGSP_BERT

* usage: Mokka mokka.steer
Plugins

* for user analysis during simulation

* plugins have user action methods that are called
 - at begin/end of run or event
 - during stepping or tracking

* steering command:

/Mokka/init/registerPlugin MyPlugin
Improving the framework: TODO list

* improve the Event Display
 - selection of detector pieces
 - selection of hits, tracks
 - 2D views
* defining materials in the DB
* improve the documentation
* etc...