Performance and occupancies in a CCD vertex detector with endcaps

Toshinori Abe and John Jaros

04/21/04
Introduction

- Motivation:

 Extend barrel tracking philosophy forward

1. Better vertexing at forward region
2. Extrapolate tracks to forward disks for momentum measurement and reliable extrapolation to the calorimetry.
3. Pattern Recognize in 5 Layers of CCD
4. Global Pattern Recognition to follow
Current working issue

- We need to make sure the feasibility of this idea.
- At this point, we are working on the following issues.
 1. Endplate layout
 2. Performance
 3. Occupancies and radiation damage
Endplate layout
Design concept

- Extend 5 layer tracking over max Ω

 Ω Coverage
 - 5 CCD layers: 0.97 (vs. 0.90 TDR VXD)
 - 4 CCD layers: 0.98 (vs. 0.93 TDR VXD)

- Minimize CCD area/cost

 - Shorten Barrel CCDs to 12.5 cm (vs. 25.0cm)

- Thin the CCD barrel endplate

 - a single 300 μm Si disk for self supporting
Performance study

- Full detector simulation for reality.
- Generate single muon track for 2GeV, 20GeV, and 200GeV as a function of cosθ.
- Do Kalman filter fit.
- Study momentum resolution, impact parameter resolution, and dip angle resolution.
Almost same performance.

Momentum and dip angle resolution

- \(\log(1-\cos \theta) \) vs \(\tan \theta \) at \(p = 0.00 \text{ GeV} \)

200 GeV

20 GeV

2 GeV

20 GeV

2 GeV
Impact parameter resolution

Better performance at the forward region.
Tracking performance with endplate

- Momentum and dip angle resolutions are same as previous design.
 - These resolutions are dominated by lever arm than VXD.

- Impact parameter resolutions are significantly improved both of low and high momentum region.
 - Do we get better heavy flavor jet tagging at forward region than before?
B-tag performance

- $Z^0 \rightarrow q \bar{q}$
- Topological vertexing at $E_{cm} \sim 91$ GeV
- P_T corrected mass tag (no optimization)
- Better b-tag performance at the forward region
Occupancy study setup

- One big question for endplate vertex detector is occupancy (and S/N ratio).
- We study it taking account to the following signal and backgrounds at $\sqrt{s}=500\text{GeV}$:
 1. $e^+e^- \rightarrow t\bar{t}$ (Pandora Pythia)
 2. Photons (Takashi)
 3. e^+e^- pairs (Takashi)
 4. $\gamma(\ast)\gamma(\ast) \rightarrow$ hadrons (Tim)
 (Backgrounds are overlaying per a train.)
- We use full detector simulation with NLC beam condition (192 bunches per train).
Endplate occupancies

VXD Endcap occupancies

- Signal + backgrounds
- Signal (t\bar{t})
- \gamma s
- e^+e^-
- \gamma\gamma \rightarrow \text{hadrons}
- Backgrounds

![Graph showing occupancies](image)

- Occupancy (1/layer/track)
- Layer number
Occupancies vs. R

10^{-3} at inner radius
Occupancy with endplate

- **Good news:**
 Occupancy rate (~10^{-5} and 10^{-3} *at inner radius*) is not terrible.
 (Thanks to very fine granularity of CCD)

- **Bad news:**
 S/N ratio is very small.
 (Small number of signal tracks and most of backgrounds are e^+e^- pairs which are real tracks.)

→ How difficult detector understanding?
→ How cost track finding?
→ How pollute signal tracks?
Radiation damage per month

About ~5 Gy/month at inner radius
How severe is it?

- I have collected opinions by two vertex detector experts.
 1. First opinion: John → Green light.
 2. Second opinion: Chris → Grey…
 (should be careful about machine environment, clock time, etc…)
- Currently we can not say 5Gy/month indicates green, yellow, or red light.
 We need more opinion about it.
Summary

- We just start a study of vertex detector with endcaps.
- The endcaps significantly contribute to improve impact parameter resolution and b-tag performance at forward region.
- The occupancy is not a problem but S/N ratio. (Is time stamp needed?)
- We are looking forward to hear expert’s opinion about radiation damage.